
# Applied MICROWAVE & WIRELESS

www.amwireless.com



Test & Measurement

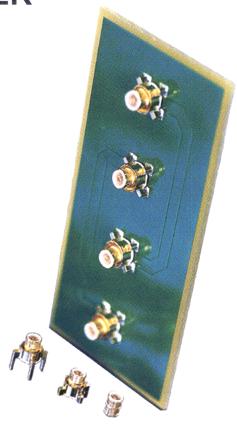
Narrow Band Ultra-Low VSWR Cable Assemblies

Design Techniques

A Comparison of Bipolar Transistor Biasing Techniques

Guest Editorial

Maximizing the Potential of the Radio Spectrum


## **A Winning Combination**

C.W. Swift and HUBER+SUHNER team up to introduce the new MMBX connector.

Small Dimensions, Maximum performance

- · Board-to-Board or Sandwich card connection
- Lowest space requirement- less than 7mm mated for design flexibility
- · Surface mount or through hole design
- Misalignment compensation- 0.7 mm axial and 0.4 mm radial
- · SUCOPRO plating for enhanced solderability
- · Available in tape and reel or bulk packaging

C.W. Swift & Associates is the original RF and microwave stocking distributor, providing delivery and personalized sales and service for over 40 years. Call us today for more information on the HUBER+SUHNER MMBX connector and a free product catalog.





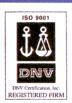
H HUBER+SUHNER

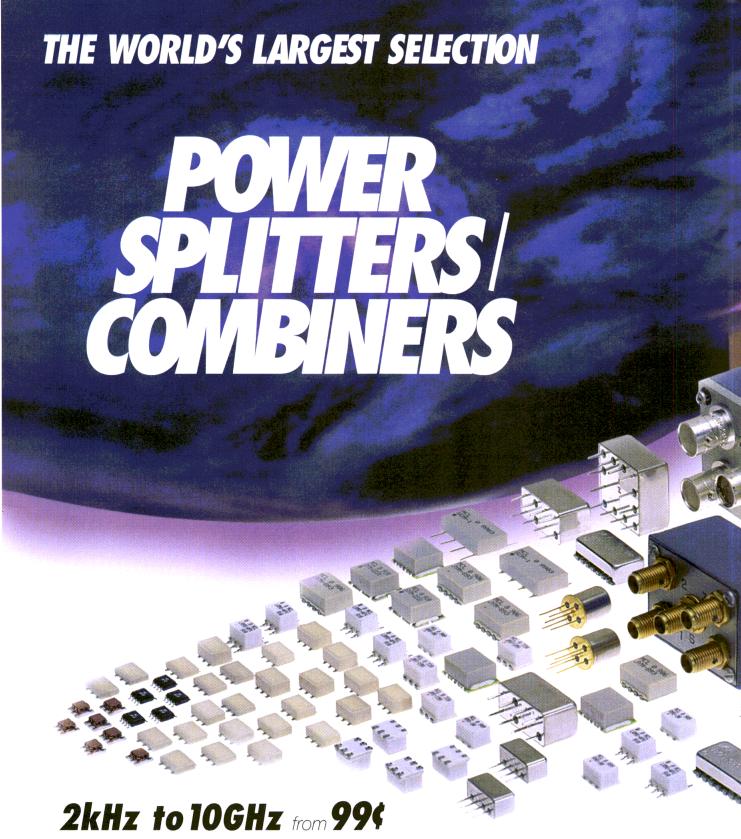
**INNOVATIVE SOLUTIONS TO COUNT ON** 

C.W. SWIFT & Associates, Inc.

15216 Burbank Blvd., Suite 300, Van Nuys, CA 91411 800-CW SWIFT • 818-989-1133 • 818-989-4784 (fax)

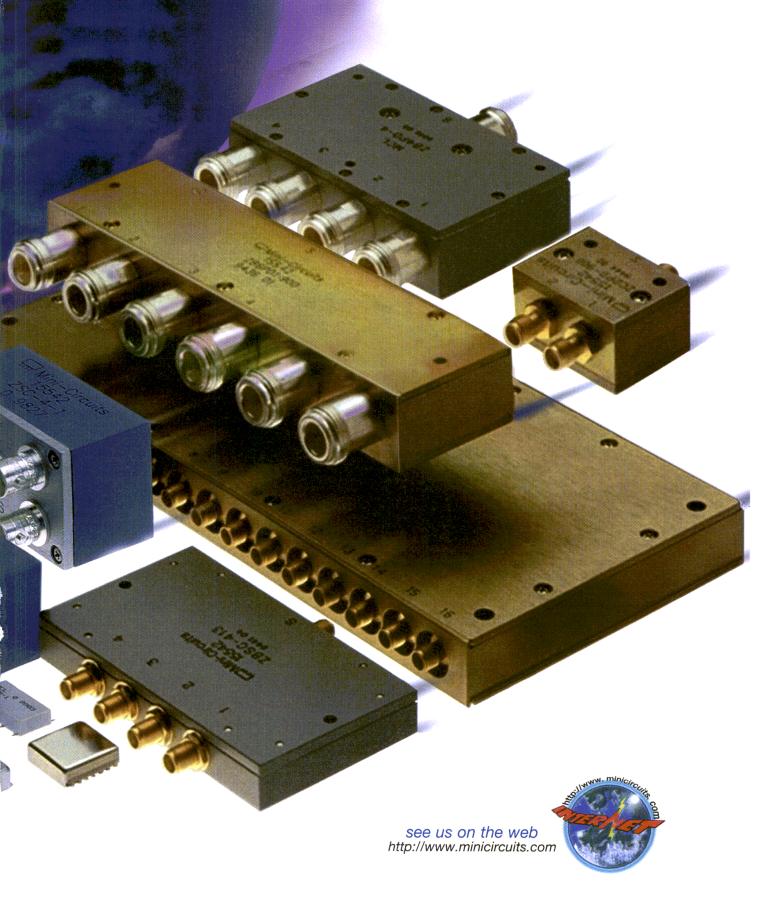
In-stock orders received before 4:00 p.m. PST are shipped the same day!


# Visit our new online catalog today @ Johansonmfg.com


The source for trimmer capacitors and tuning elements

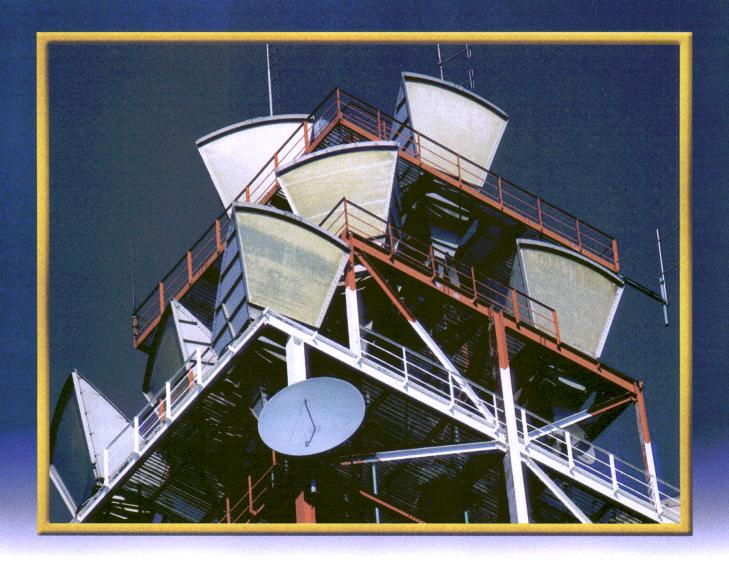





Rockaway Valley Road Boonton, New Jersey 07005 TEL 973-334-2676 FAX 973-334-2954 www.johansonmfg.com






Choose from over 550 standard off-the-shelf models from 2way and 3way to 48way; 0°, 90°, and 180°; 50 and 75 ohms covering 2kHz to 10GHz. Mini-Circuits will also supply your special needs and custom designs such as wider bandwidths, higher isolation, lower insertion loss and phase matched ports...all at catalog prices with rapid turnaround time. Case styles include surface mount, plug-in, flat pack, and coaxial connectorized... and custom case styles are no problem! Super-miniature and ultra-low profile surface mount units provide excellent solutions in cellular communications, cable systems, and countless wireless applications. And all units come with a 1 year guarantee and skinny 4.5 sigma performance repeatability unit-to-unit and production run to production run. Add fast delivery, unsurpassed applications support and value pricing, and the decision is easy. Call Mini-Circuits today!

Mini-Circuits...we're redefining what VALUE is all about!



## Mini-Circuits®

US 101



## Signal loud and clear!

Stanford Microdevices' SGL Series silicon-germanium (SiGe) amplifiers offer the wireless system designer noise figures typical of GaAs devices at silicon prices.



OT-363 Package

And, their economy goes beyond price. Low noise figure makes them ideal for today's vast range of wireless devices. These units also offer exceptional Input IP3 performance for the DC power consumed at 3 volts. At the designer' option, P1dB and Input IP3 can be increased 5 dB by operating with a 4-volt device voltage.

For more information, visit us at stanfordmicro.com.

| Part Number | Freq Range<br>(MHz) | Vd<br>(V) | ld<br>(mA) | P1dB<br>(dBm) | Input<br>IP3<br>(dBm) | Gain<br>@<br>(dB) | NF<br>50 ohm<br>(dB) | Package |
|-------------|---------------------|-----------|------------|---------------|-----------------------|-------------------|----------------------|---------|
| SGL-0163    | 800-1000            | 3.0       | 11         | +5            | +6                    | 15                | 1.1                  | SOT-363 |
| SGL-0263    | 1800-2500           | 3.0       | 11         | +5            | +7                    | 14                | 1.3                  | SOT-363 |

Gain and Input IP3 can be increased 5 dB with a 4.0 device voltage, 25 mA.



www.stanfordmicro.com • 800.764.6642



## **Economize.**

At prices as low as 29¢ each\*, Stanford Microdevices' affordable SGA series gain blocks present a cost-effective solution to designers with high-volume requirements in wireless data products and thousands of general-purpose applications up to 5 GHz.

And, the SGA series' economy goes beyond price. The units' low-voltage operation and low DC current requirement make so them ideal for today's vast range of wireless devices requiring power-efficient performance.

The broadband units also offer exceptional IP3 performance and superior linearity for the power consumed.

| Part Number | Bandwidth<br>(GHz) | Gain<br>@ 1 GHz<br>(dB) | Gain<br>(dB) | P1dB<br>(dBm) | OIP3<br>(dBm) | Noise<br>Figure<br>(dB) | Vd<br>(V) | ld<br>(mA) |
|-------------|--------------------|-------------------------|--------------|---------------|---------------|-------------------------|-----------|------------|
| Low Voltage | Gain Bloc          | ks                      |              |               | _             |                         |           |            |
| SGA-0163    | DC-4.5             | 13                      | 12           | -2            | +9            | 4.7                     | 2.1       | 8          |
| SGA-0363    | DC-5.0             | 20                      | 17           | +2            | +14           | 3.0                     | 2.5       | 11         |
| High Revers | e Isolation        | Gain Bl                 | ocks         |               |               |                         |           |            |
| SGA-1163    | DC-6.0             | 12                      | 11           | -3            | +8            | 3.1                     | 4.6       | 12         |
| SGA-1263    | DC-4.0             | 16                      | 15           | -8            | +3            | 2.7                     | 2.8       | 8          |
| General Pur | ose Gain           | Blocks                  |              |               |               |                         |           |            |
| SGA-2163    | DC-5.0             | 10                      | 10           | +7            | +21           | 4.2                     | 2.2       | 20         |
| SGA-2263    | DC-3.5             | 15                      | 14           | +8            | +20           | 3.2                     | 2.2       | 20         |
| SGA-2363    | DC-2.8             | 17                      | 16           | +8            | +19           | 2.9                     | 2.7       | 20         |
| SGA-2463    | DC-2.0             | 20                      | 17           | +9            | +20           | 2.7                     | 2.7       | 20         |

For more information, visit us at stanfordmicro.com. \*500,000 pieces



www.stanfordmicro.com • 800.764.6642

## omeor sthe nixers.



#### **Mini-Circuits**

Best performance, best innovations, best value. Someone will always be on top. Take Mini-Circuits, for example. While other companies offer some high IP3 mixers, we've introduced an entire family of mixers incorporating unique patented technology to deliver the highest IP3 for low, medium, and high LO power levels. IP3 as high as +38dBm! And unlike other mixers, our HUD and HJK models require no DC power, which simplifies circuit layout and makes them very easy to use in 115 to 2300MHz applications. But while other suppliers are concentrating mainly on IP3 performance, Mini-Circuits goes beyond by providing very low conversion loss down to 6.7dB, high isolation up to 49dB, and 1dB RF compression point 3dB higher than LO power...all from a smaller, industry standard package fitting the footprint of conventional solutions. Nobody else has these high performance, high IP3 mixers. But even if they did, nobody but Mini-Circuits could offer them off-the-shelf at an amazing price from only \$10.95 each!

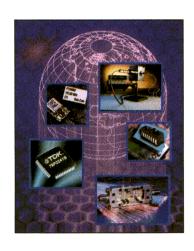
| Mini-Circuits | .we're | redefining | what | VALUE IS | all about! |
|---------------|--------|------------|------|----------|------------|

|    | Model*   | Frequ<br>(Mi<br>RF | iency<br>Hz)<br>IF | LO<br>level<br>(dBm) | IP3<br>(dBm)<br>Typ. | Conv Loss<br>(dB)<br>Typ. | L-R<br>ISO. (dB)<br>Typ. | L-I<br>ISO. (dB)<br>Typ. | Price<br>\$ea.<br>(1-9) |
|----|----------|--------------------|--------------------|----------------------|----------------------|---------------------------|--------------------------|--------------------------|-------------------------|
|    | HJK-9    | 818-853            | 40-100             | 7                    | 22                   | 7.1                       | 36                       | 26                       | 10.95                   |
|    | HJK-19   | 1850-1910          | 70-130             | 7                    | 21                   | 8.0                       | 30                       | 24                       | 10.95                   |
|    | HJK-21   | 1850-1910          | 180-300            | 7                    | 22                   | 7.5                       | 28                       | 19                       | 10.95                   |
|    | HJK-9LH  | 818-853            | 40-100             | 10                   | 27                   | 6.7                       | 37                       | 27                       | 12.95                   |
|    | HJK-19LH | 1850-1910          | 70-130             | 10                   | 25                   | 7.5                       | 30                       | 23                       | 12.95                   |
|    | HJK-21LH | 1850-1910          | 180-300            | 10                   | 25                   | 7.2                       | 28                       | 19                       | 12.95                   |
|    | HJK-9MH  | 818-853            | 40-100             | 13                   | 31                   | 6.7                       | 37                       | 27                       | 14.95                   |
|    | HJK-19MH | 1850-1910          | 70-130             | 13                   | 30                   | 7.4                       | 30                       | 23                       | 14.95                   |
|    | HJK-21MH | 1850-1910          | 180-300            | 13                   | 29                   | 7.2                       | 29                       | 19                       | 14.95                   |
| ** | HJK-3H   | 140-180            | 0.5-20             | 16                   | 37                   | 8.0                       | 44                       | 44                       | 16.95                   |
|    | HJK-9H   | 818-853            | 40-100             | 17                   | 33                   | 6.7                       | 35                       | 31                       | 16.95                   |
|    | HJK-19H  | 1850-1910          | 70-130             | 17                   | 34                   | 7.7                       | 28                       | 22                       | 16.95                   |
|    | HJK-21H  | 1850-1910          | 180-300            | 17                   | 36                   | 7.6                       | 28                       | 25                       | 16.95                   |
|    | HUD-3H   | 140-180            | 0.5-20             | 16                   | 37                   | 8.1                       | 47                       | 45                       | 15.95                   |
|    | HUD-19SH | 1819-1910          | 50-200             | 19                   | 38                   | 7.5                       | 38                       | 36                       | 19.95                   |

<sup>\*</sup>Units protected under U.S. patents 5,416,043 and 5,600,169.



US 102 INT'L 112


CIRCLE READER SERVICE CARD

<sup>\*\*</sup>Additional patents pending.

Size (L x W x H): HJK 0.500" x 0.375" x 0.23", HUD 0.803" x 0.470" x 0.250".



#### CONTENTS



#### 120

## On Our Cover Product Focus — Devices for Fiber Optics and Optical Communications

Our special collection of new product announcements covers the world of optical communications.

Photos provided by Champion Technologies, CTT Wireless, Faraday, TDK, Racal Instruments, Telecom International Services and Vishay.

#### THE CHNICAL FEATURES

## A Comparison of Various Bipolar Transistor Biasing Circuits

This article is a comprehensive review of biasing techniques for bipolar transistors, updated for today's discrete devices. Although RFICs dominate many applications, other uses require maximum performance that can only be achieved by an optimized discrete design.

— Al Ward and Bryan Ward, Agilent Technologies

## Connector and Termination Construction above 50 GHz Interconnections at mm-wave frequencies require a combination of

electrical and mechnical precision. Here are the design considerations and techniques that will make these connections work properly.

— Bill Oldfield, Anritsu

## 70 Compatibility of Dual Use Standardized FQPSK with Other Data Links and WCDMA

Spectrally-efficient modulation schemes address problems of adjacent-channel interference and amplifier linearity requirements. This article examines the ability of one such modulation type (FQPSK) to operate with other modulation formats in wireless communications systems.

— James A. McCorduck, Entech Engineering, and Dr. Kamilo Feher, University of California, Davis and Digcom Inc.

#### 98 Wideband Gain Block Amplifier Design Techniques

Here is a thorough review of the design concepts for general-purpose wideband RFIC amplifiers and implementation in commercially available products.

— Chris Arnott, RF Micro Devices

#### 110 Narrow Band Ultra Low VSWR Cable Assemblies

Precision measurements may require ultra-low VSWR over a specific frequency range. This article spells out the VSWR behavior of cables and connectors, showing how they can be optimized.

— Bruce Bullard and Eric Houghland, Kaman Instrumentation

## Applied

### MICROWAVE & WIRELESS

#### PRODUCTS & TECHNOLOGIES

## 116 Preview of the IEEE MTT-S Symposium

RF and microwave engineers, professors and others involved in the technology behind wireless communications will meet in Phoenix at the International Microwave Symposium (IMS2001), related conferences and a major industry exhibition.

#### GUEST EDITORIAL

## Maximizing the Potential of Radio Spectrum with High-Order Modulation

One solution to efficient use of the available radio spectrum is the use of high order modulation schemes that pack more data into a given bandwidth. Here are the views on that topic from one company involved in high-data rate microwave technology.

— Peter Gibson, DMC Stratex Networks



#### DEPARTMENTS

- 10 Editorial
- 12 Letters to the Editor
- 14 Calendar Conferences & Short Courses
- 18 News
- 79 Products
- 81 Reader Service Card
- 128 Classified Advertising
- 130 Advertiser Index

#### **Publisher**

Garv A. Breed

#### **Associate Publisher**

Scott Spencer

#### **Director of Operations**

Dennis Ford

#### **Managing Editor**

Shannon O'Connor

#### **Senior Consulting Editor**

Dr. Joseph F. White

#### **Editorial Advisors**

Dr. Peter Staecker

Dr. James C. Rautio

Dr. Frederick H. Raab

Dr. Les Besser

Dr. Peter Rizzi

Dr. T.B. Ramachandran

Ben Robinson

#### **Art Director**

Joan Clipp

#### **Assistant Editors**

Kristine Phillips Sarah Sturm

#### **Associate Editor**

Martina Voigt

#### **Data Manager**

Nancy Breed

#### **Office Assistant**

Stephanie Hayden

#### **Advertising Sales — East**

Scott Spencer

Tel: 603-472-8261

Fax: 603-471-0716

#### **Advertising Sales — West**

Tim Burkhard

Tel: 707-544-9977 Fax: 707-544-9375

#### Classified & Spotlight Ads, Reprints and List Rentals

Aileen Kronke

Tel: 770-449-6774

Fax: 770-448-2839

#### New Subscriptions and Address Changes

Mail: 630 Pinnacle Court Norcross, GA 30071

Fax: 770-448-2839

#### **Back Issues**

Tel: 770-449-6774



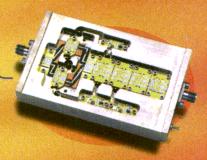


Applied Microwave & Wireless
Noble Publishing Corporation
630 Pinnacle Court

Norcross, GA 30071 Tel: 770-449-6774 Fax: 770-448-2839

E-mail: amw@amwireless.com

www.amwireless.com


## AMPLIFIERS

## FOR EVERY APPLICATION

| Model#                                            | Freq Range | Gain     | N/F       | <b>Gain Flat</b> | 1 dB comp.     | 3rd Order | VSWR       | DC Current |
|---------------------------------------------------|------------|----------|-----------|------------------|----------------|-----------|------------|------------|
|                                                   | (GHz)      | (dB min) | (dB max)  | (+/-dB)          | pt. (dBm min)  | ICP min   | In/Out max | (mA)       |
|                                                   |            |          |           |                  | === (1 IP ===  |           |            |            |
|                                                   |            |          |           | AMPLIF           | ERS (UP TO     |           |            |            |
| JCA01-P01                                         | 0.5-1.0    | 25       | 3.5       | 1                | 30             | 40        | 2.0:1      | 250        |
| JCA12-P01                                         | 1.0-2.0    | 32       | 3         | 1                | 30             | 40        | 2.0:1      | 800        |
| JCA34-P01                                         | 3.7-4.2    | 30       | 3         | 1                | 30             | 40        | 2.0:1      | 750        |
| JCA56-P01                                         | 5.9-6.4    | 30       | 3         | 1                | 30             | 40        | 2.0:1      | 850        |
| JCA78-P01                                         | 7.9-8.4    | 30       | 4         | 1                | 30             | 40        | 2.0:1      | 900        |
| JCA812-P02                                        | 8.3-11.7   | 40       | 5         | 1.5              | 33             | 40        | 2.0:1      | 1700       |
| JCA910-P01                                        | 9.5-10.0   | 30       | 4         | 1                | 33             | 40        | 2.0:1      | 1300       |
| JCA1011-P01                                       | 10.7-11.7  | 30       | 4         | 1                | 30             | 40        | 2.0:1      | 950        |
| JCA1819-P01                                       | 18.1-18.6  | 30       | 5         | 1                | 27             | 37        | 2.0:1      | 800        |
|                                                   | DADA       | D 0 CO   | ANALINICA | TION DA          | ND LOW NO      | ICE AND   | LIFIEDC    |            |
| 10100.000                                         |            |          |           |                  | ND LOW NO      |           |            | - 00       |
| JCA23-302                                         | 2.2-2.3    | 30       | 0.8       | 0.5              | 10             | 20        | 2.0:1      | 80         |
| JCA34-301                                         | 3.7-4.2    | 30       |           | 0.5              | 10             | 20        | 2.0:1      | 80         |
| JCA56-502                                         | 5.4-5.9    | 50       | 1         | 0.5              | 10             | 20        | 2.0:1      | 160        |
| JCA78-305                                         | 7.25-7.75  | 27       | 1.2       | 0.5              | 13             | 23        | 2.0:1      | 100        |
| JCA910-305                                        | 9.0-9.5    | 27       | 1.4       | 0.5              | 13             | 23        | 1.5:1      | 150        |
| JCA1112-305                                       | 11.7-12.2  | 27       | 1.5       | 0.5              | 13             | 23        | 1.5:1      | 150        |
| JCA1415-305                                       | 14.0-14.5  | 26       | 1.6       | 0.5              | 13             | 23        | 1.5:1      | 160        |
| JCA1819-305                                       | 18.1-18.6  | 22       | 2.0       | 0.5              | 10             | 20        | 1.5:1      | 160        |
| JCA2021-600                                       | 20.2-21.2  | 30       | 2.2       | 1                | 13             | 23        | 1.5:1      | 240        |
|                                                   |            | TE       | RI-BAND A | MPLIFIER         | RS (5.85 TO    | 14.5)     |            |            |
| JCA514-201                                        | 5.85-14.5  | 8        | 7         | 1.5              | 10             | 20        | 2.0:1      | 100        |
| JCA514-300                                        | 5.85-14.5  | 14       | 6         | 1.5              | 10             | 20        | 2.0:1      | 150        |
| JCA514-302                                        | 5.85-14.5  | 22       | 6         | 1.5              | 20             | 30        | 2.0:1      | 350        |
| JCA514-400                                        | 5.85-14.5  | 25       | 6         | 1.5              | 10             | 20        | 2.0:1      | 250        |
| JCA514-403                                        | 5.85-14.5  | 32       | 6         | 1.5              | 23             | 33        | 2.0:1      | 500        |
| JCA514-501                                        | 5.85-14.5  | 35       | 6         | 1.5              | 16             | 26        | 2.0:1      | 375        |
| JCA514-503                                        | 5.85-14.5  | 41       | 6         | 1.5              | 23             | 33        | 2.0:1      | 500        |
|                                                   |            |          |           |                  |                |           |            |            |
| 7 19 40 FE 10 10 10 10 10 10 10 10 10 10 10 10 10 |            |          |           |                  | LIFIERS (2.0 1 |           |            |            |
| JCA218-200                                        | 2.0-18.0   | 15       | 5         | 2.5              | 10             | 20        | 2.0:1      | 90         |
| JCA218-300                                        | 2.0-18.0   | 23       | 5         | 2.5              | 10             | 20        | 2.0:1      | 110        |
| JCA218-400                                        | 2.0-18.0   | 29       | 5         | 2.5              | 10             | 20        | 2.0:1      | 150        |
| JCA218-500                                        | 2.0-18.0   | 39       | 5         | 2.5              | 10             | 20        | 2.0:1      | 180        |


JCA's catalog can now be downloaded from the Web at www.jcatech.com

- HIGH RELIABILITY
- Competitively priced
- OUICK DELIVERY











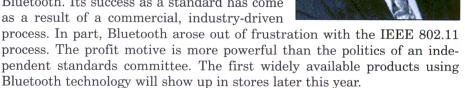
**DELIVERY IN 2-4 WEEKS ARO** 

4000 Via Pescador, Camarillo, CA 93012
Phone: (805) 445-9888 • Fax: (805) 987-6990
Email: jca@jcatech.com



Circle 33

#### **Editorial**

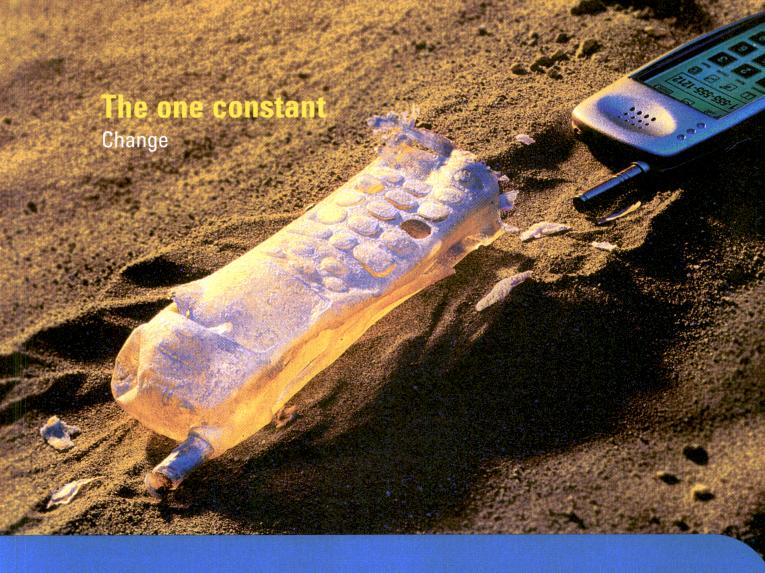

## **Are Standards Really Needed for Wireless Data Applications?**

By Gary A. Breed Publisher

Several years ago, when the IEEE 802.11 Committee meetings were rowdy, contentious affairs, I began wondering whether it was worth the trouble. If standards are delayed, compromised and watered-down, will they

still be viable at the end of the process? Wireless data products based on IEEE 802.11 should have been on the market six years ago. Instead, they are appearing only now. The IEEE 802.11 experience is a perfect example of a process that was based on the belief that standards would help create a new market. Instead, the standards battle may have prevented a market from developing as fast as it should have.

Coming from a different direction is Bluetooth. Its success as a standard has come as a result of a commercial, industry-driven




In the meantime, many companies (and a few consumers) have been using wireless data without regard to standards. A vast number of specific needs have been met without concern for off-the-shelf technology or interoperability. If a company wants to install a 10 Mb/s wireless data link between its main office and the new R&D lab across the freeway, many proprietary solutions are available.

If I want to connect my upstairs computer to the one in the downstairs office, I can either wait for a standards-based unit to appear at an affordable price, or can go out today and buy some company's 900 MHz or 2.4 GHz ISM band wireless unit that uses a proprietary communications protocol. As long as my units talk to each other, why should I care if they are compliant with some standard?

In the long run, standards are required. Sometime in the future, wireless interconnections will be commonplace, and different users will need to communicate with a common modulation format and data transfer protocol. But even then, the standard will be unimportant once the user is outside that wireless network.





www.agilent.com/find/wireless

u.s. 1-800-452-4844, ext. 7315 canada 1-877-894-4414, ext. 7322 And with every new format, technology, or player to enter your market, the pressure increases to keep ahead of pace. Now, perhaps more than ever, choosing the right people to collaborate with is critical. Consider someone who knows where the wireless world is heading. Agilent. We've been heavily involved with the standards boards since day one. And we're committed to giving you insight from which to base your design and manufacturing processes that's as sophisticated as your new technology. And solutions that work together across disciplines. With worldwide support and expertise wherever your teams need it. Suddenly, those market windows don't seem quite so small. **Dreams made real**.



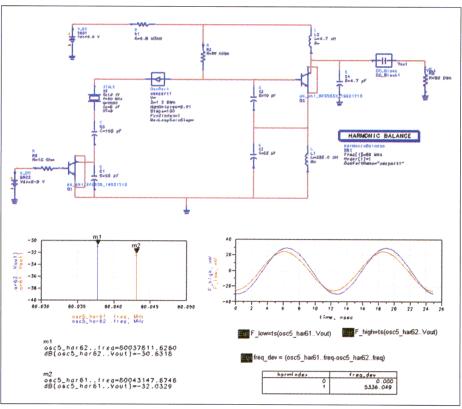
©2001 Agilent Technologies ADEP5984008/AMW

#### Readers comment on FSK article

Editor:

K. Jegnathan's article (Design Ideas, "A Transistor-Controlled FSK Modulator/Transmitter," December 2000) suggests that a 25 MHz crystal oscillator can be pulled 5 MHz or so by the addition of inductor Lx — or, at least, that is what the data in Figure 5 suggests.

If the crystal motional capacitance C1 is 1E-15 farads as you suggest, then the change in reactance from 25 MHz to 30 MHz is about –j1E6 ohms! This suggests that the crystal is actually NOT part of the frequency determining elements. Remove the crystal from your circuit and re-run your simulations. I think you will find that the circuit still behaves the same.


Charlie Thompson Maxim Austin Design Center

The author replies:

I acknowledged the simulation circuit could provide some misinterpretation easily. The resistance and the inductance parallel to the crystal oscillator should not be included during the simulation. Rather, these components are mainly needed for practical purposes only. The corrected circuit and the simulation results are given at right. As a matter of fact, the crystal oscillators can only be pulled for a few kilohertz only. If more deviation is required, then the harmonics of the fundamental can be tuned out through a relevant filter. The circuit shown at right provides a frequency deviation of about 5.3 kHz for the fundamental frequency.

#### Editor:

In 1991, a client of mine (Worthington Data Systems, Santa Cruz, CA) asked me to design a pen barcode reader that would be completely wireless. I successfully accomplished this by using the very same modulator described in this article, along with two other innovations I thought were unique at that time. I



Corrected circuit and simulation results for a 25 MHz crystal oscillator.

came up with the idea of GMSK filtering and transmission and also a stabilized DC balancing circuit that allowed completely un-scrambled data to be sent even though the data contained strings of zeros or ones. A patent application was written that included all of these circuits, but as far as I know it was not filed with the USPO. It's probably good it wasn't filed, because I've been told these ideas were very likely prior art to my disclosure in 1991. I still have the EESOF Libra simulations and the FCC lab Part 15 testing results showing this combination of modulation with this modulator/transmitter indeed worked very well.

Jeffrey Pawlan Pawlan Communications

#### Amateur radio draws interest

Editor:

I read with interest your October 2000 editorial, asking, "How can we get kids interested in wireless tech-

nology careers?" In my opinion, one good way to get fresh blood is amateur radio. By getting youngsters interested in Ham Radio very early, most of them get hooked and will choose courses enabling them to work in the wireless field. For example, I got interested in Ham Radio when I was 13. Until then, I'd never been a math-inclined pupil, but I saw that math would be very useful for my hobby. I then began to get good grades in math simply because I understood its usefulness for my hobby. Naturally, the hobby pushed me in my school courses in a way I would not have investigated before.

A few years ago, two men received the Nobel Prize in Physics for their studies. One of them commented that without being interested in Ham Radio when he was a kid, he would never have won the prize.

Best wishes and thanks very much for the nice magazine.

Dom DeHays Instructor, ENAC France There's a simple migration path to Microwave Office. Lately, it's been more like a stampede.



2001 Applied Wave Research, Inc. All rights reserve

Download a fully-functional 30-day trial (just 20MB) at www.mwoffice.com and start designing today.

At least there's one bull market going on right now and there's only one option you need to exercise—Microwave Office 2001. It's simple...does your current high frequency design solution easily support all of your old designs? Do you feel like you need to be a rocket scientist to perform a simple optimization? Is it easy to use and customize? Do you get regular

timely upgrades? If not, it's time to go down another path. No EDA software is more powerful or intuitive. And our schematic data translators import existing Agilent EEsof designs, so you won't lose any valuable data. For more info, visit www.mwoffice.com or call us at 310-726-3000.



#### CONFERENCES

#### APRIL

#### April 20-21, 2001

#### **Topical Workshop on Flip Chip Technology**

Palo Alto, CA

Information: IMAPS

Tel: 703-758-1060; Fax: 703-758-1066

E-mail: imaps@imaps.org Internet: http://www.imaps.org

#### April 21-26, 2001

### National Association of Broadcasters Conference and Exhibition (NAB2001)

Las Vegas, NV Information: NAB

Internet: http://www.nab.org

#### April 23-25, 2001

#### **49th International Relay Conference**

Oak Brook, IL Information: ECA Tel: 703-907-7547

Internet: http://www.ec-central.org

#### April 24-25, 2001

#### Second European Workshop on Conformal Antennas

The Hague, The Netherlands Information: Wim L. Smith E-mail: iec@fel.tno.nl

Internet: http://www.tno.nl/instit/fel/felnews/

conformal\_antennas

#### MAY

#### May 1-3, 2001 2001 IEEE Radar Conference

Atlanta, Georgia

Information: Georgia Institute of Technology

E-mail: conted@gatech.edu

Internet: http://www.conted.gatech.edu/home

#### May 8-10, 2001

## Mikrowellen und Optronik (Microwaves and Optronics), The German Wireless Week (MIOP)

Stuttgart, Germany

Information: Dr. Martin Schallner E-mail: martin.schallner@marconi.com

#### May 13-16, 2001

## Fourth Conference on Electromagnetic Wave Interaction with Water and Moist Substances

Information: Dr. Klaus Kupfer E-mail: klaus.kupfer@mfpa.de Internet: http://www.mfpa.de

#### May 13-17, 2001

#### International Symposium on Electromagnetic Theory

Victoria, British Columbia, Canada

Information: Secretariat

Tel: 613-993-9431; Fax: 613-993-7250

E-mail: URSI-B2001@nrc.ca

Internet: http://www.nrc.ca/confserv/URSI-B2001

#### May 20-25, 2001

#### 2001 IEEE MTT-S International Microwave Symposium

Phoenix, AZ

Information: LRW Associates

Tel: 704-841-1915; Fax: 704-845-3078 E-mail: lrwassoc@carolina.rr.com Internet: http://www.ims2001.org

#### May 22-24, 2001

#### **Automated Manufacturing Exposition**

Greenville, SC

Information: Marlene Cobia

Tel: 803-779-7123, x. 17; Fax: 803-779-7167

E-mail: mcobia@tecinconline.com Internet: http://www.am-expo.com

#### May 25, 2001

#### 57th ARFTG Microwave Measurements Conference

Phoenex, AZ

Information: David Walker

Tel: 303-497-5490; Fax: 303-497-3970 E-mail: dwalker@boulder.nist.gov Internet: http://www.arftg.org

#### JUNE

#### June 6-8, 2001

## IEEE International Conference on Third Generation Wireless and Beyond (3Gwireless'01)

San Francisco, CA Information: H. Janny E-mail: janny@delson.org

Internet: http://www.3Gwireless.com/3Gwireless01

#### June 6-8, 2001

#### IEEE Frequency Control Symposium & PDA Exhibition

Seattle, WA Information: ECA Tel: 703-907-7547

Internet: http://www.ec-central.org

#### June 6-8, 2001

### 2001 Virginia Tech Symposium on Wireless Personal Communications

Blacksburg, VA

Information: Jenny Frank

Tel: 540-231-2971 E-mail: mprg@vt.edu



At TRILITHIC

# SOLATION is a good thing

Trilithic's line of top quality RF switches are designed to meet both common and uncommon signal routing challenges.

Serious Technology for Serious Engineers.

Visit us at the MTT-S Show, Booth #3305.

For reliable solutions, call Trilithic and ask for more information on 1202.

- Higher isolation
- Flexible design configurations
- Excellent systems performance
- · Long-term reliability
- Low-cost implementation
- Available in 2-, 4-, 8-, and 16-way configurations
- Low price



TRILITHIC WIRELESS DIVISION

#### SHORT COURSES

#### **Besser Associates**

Fiber Optics Made Simple Mountain View, CA . . . . . April 2-3, 2001 Broadband Networking Made Simple Mountain View, CA . . . . . . April 4-5, 2001 Antennas and Array Design for Wireless Communications Mountain View, CA . . . . . April 9, 2001 Filters for Wireless Applications Mountain View, CA . . . . . April 16-17, 2001 DSP Made Simple for Engineers Mountain View, CA . . . . . . April 18-20, 2001 Applied RF Techniques I RF and Wireless Made Simple Advanced RF Power Amplifiers Techniques RF and Wireless Made Simple II Modern Digital Modulation Techniques Mountain View, CA . . . . . April 30-May 4, 2001 Information: Annie Wong, Tel: 650-949-3300; Fax: 650949-4400; E-mail: info@bessercourse.com; Internet: www.bessercourse.com.

## TTi Technology Training Initiative (Tustin Technical Institute, Inc.)

Calibration Processes

Santa Barbara, CA . . . . . April 2-4, 2001

Physical Measurement Techniques

Santa Barbara, CA . . . . . April 9-11, 2001

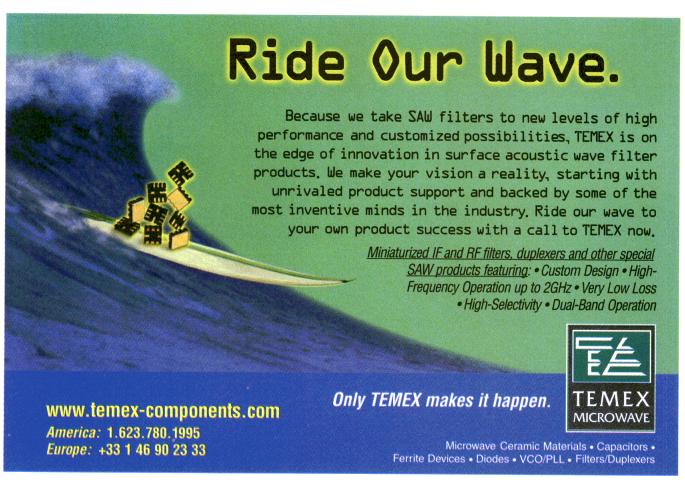
Measurement Uncertainty

Santa Barbara, CA . . . . . . April 11-13, 2001

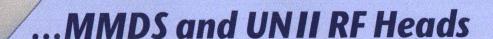
Thermal Analysis and Heat Transfer

Santa Barbara, CA . . . . . . April 18-20, 2001

Grounding and Shielding for EMI/EMC/ESD


Santa Barbara, CA . . . . . . April 25-27, 2001

Test Procedures for EMI/EMC/ESD


Santa Barbara, CA . . . . . . . April 30-May 2, 2001

Information: Brian P. Slatery, Tel: 805-682-7171; Fax: 805-687-6949; E-mail: brian@ttiedu.com; Internet: www. ttiedu.com.

#### **University of Wisconsin at Madison**



# For Point-to-Multipoint Applications...



WJ MMDS Point-to-Multipoint RF Unit

- 2.5-2.7GHz
- Up to 60MHz Tx, Rx
- MDS Tx Option

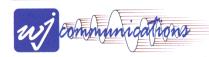
WJ UNII Point-to-Multipoint RF Unit

- 5.725-5.825GHz
- 25MHz Tx, Rx Bands

## WJ Communications – a Cisco Technology Partner

Other features include:

- Full duplex operation
- Integral antennas
- Single cable interface from IDU to ODU
- Optional duplexer configurations


For more details, call our toll free number, fax us at 408-577-6620 or e-mail us at sales@wj.com. Data sheets are available in PDF download file format by visiting our web site at www.wj.com.



1-800-WJ1-4401

Visit us on the web at www.wj.com

The Communications Edge™



#### Calendar

Information: Katie Peterson, Tel: 1-800-462-0876; Fax: 608-263-3160; E-mail: custserv@epd.engr.wisc.edu; Internet: http://epd.engr.wis.edu.

#### University of California at Los Angeles Extension

Digital Signal Processing: Theory, Algorithms and Implementation

*Los Angeles, CA . . . . . . . April 9-13, 2001* Charge-Coupled Devices/CMOS Imaging Sensors and Cameras

Los Angeles, CA . . . . . . . April 30-May 4, 2001 Information: UCLA Extension, Short Course Program Office, Tel: 310-825-3344; Fax: 310-206-2815.

#### University of Missouri-Rolla

#### **Georgia Institute of Technology**

#### R.A. Wood Associates

Submit calendar items to amw@amwireless.com

## RF, Wireless, and High-Speed Digital Training

Join a new class of engineers! Over 25,000 satisfied industry professionals profit from our courses.

#### Mountain View, CA

Modern Digital Modulation Techniques

April 30-May 4, 2001

RF Wireless System Design Fundamentals

May 7-9, 2001

Bluetooth: Operation and Use May 10-11, 2001

3G Made Simple May 14, 2001

RF and Wireless Made Simple May 15-16, 2001

RF and Wireless Made Simple II May 17-18, 2001

Applied RF Techniques I June 4-8, 2001 RF Test Equipment Operations (lab) June 12, 2001

RF Testing for the Wireless Age (lab) June 13-15, 2001

Receiver and Transmitter Circuit Design

June 18-22, 2001

Frequency Synthesis and Phase-Locked Loops June 25-26, 2001

RF CMOS Design June 28-29, 2001

July 16-18, 2001

Advanced RF Power Amplifier Techniques July 10-13, 2001

DSP Made Simple for Engineers

#### Boston, MA

Applied RF Techniques I April 23-27, 2001

Advanced RF Power Amplifier Techniques April 24-27, 2001

RF and Wireless Made Simple April 24-25, 2001

RF and Wireless Made Simple II April 26-27, 2001

#### San Diego, CA

Fiber Optics Made Simple July 10-11, 2001

Short Range Wireless and Bluetooth July 10-13, 2001

RF and Wireless Made Simple July 12-13, 2001

Visit www.bessercourse.com for our complete course catalog and current schedule.

Private and/or custom training can be delivered at your workplace. Call 650-949-3300 for details.

Stop by our website for a full listing of courses through September 2001!



#### **Besser Associates™**

The Worldwide Leader in RF and Wireless Training

201 San Antonio Circle, Building E, Suite 280, Mountain View, CA 94040 tel: 650-949-3300 fax: 650-949-4400 web: http://www.bessercourse.com

Space for all classes is limited; early registrations are encouraged. Schedule and venues subject to change
The Besser Associates name and logo are trademarks of Besser Associates, Incorporated.

**AMPS** CDMA CDPD **DAMPS** DCS1800 **ECM EDGE EW** GEO **GPRS GPS GSM900 HFC** IFF LEO LMDS LMR MMDS NPCS PCS PCS1900 RADAR RFID SMR **TDMA TETRA** UMTS WAP WBA WCDMA WLAN WLL WWAN



9,500 part numbers.

9,000,000 solutions shipped.

Creating RF and Microwave solutions since 1953.
What can we do for you?



We Have A Part In Your Future

Circle 64

SV967 SV967 1740V 0003

4895 Peoria Street

Denver, Colorado 80239

3 0 3 3 3 7 1 1 1 5 6 0

fax 3 0 3 3 7 1 . 0 8 4 5

e-mail: sales @ vari-l.com

OUR
PRODUCTS
INCLUDE:

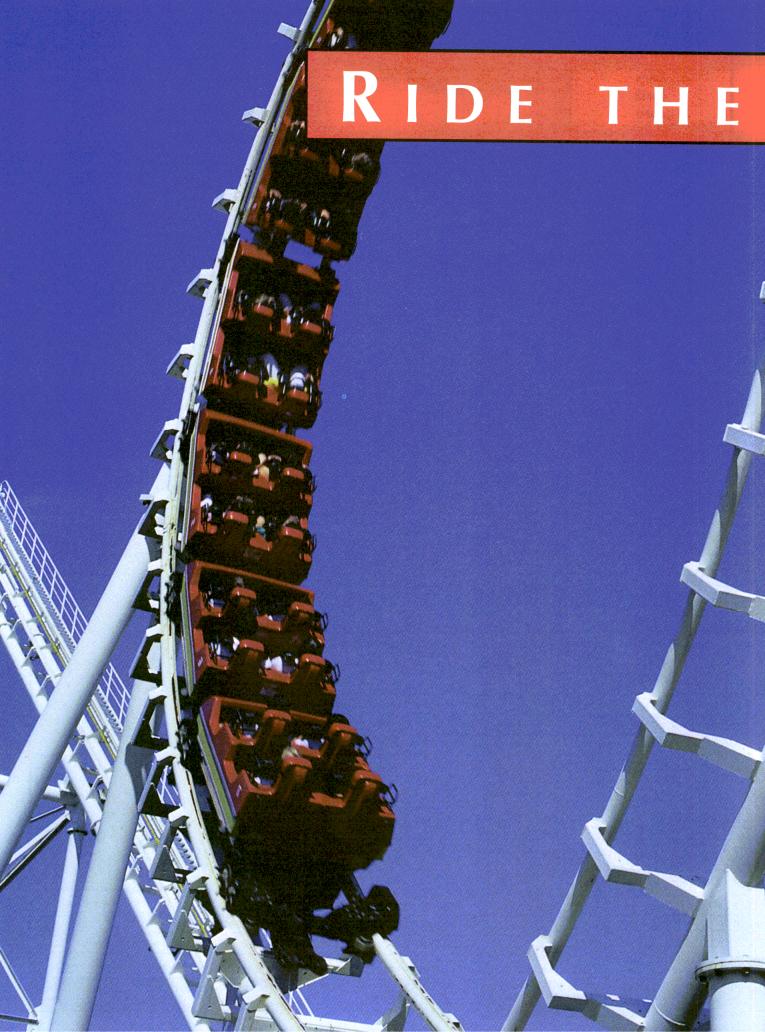
PLL Synthesizer Modules W
Special Integrated Assemblies

Power Dividers/Combiners

Wideband RF Transformers

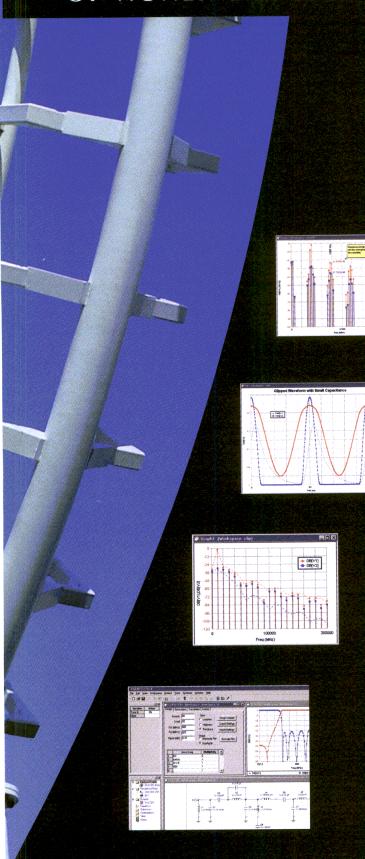
Couplers

ISO9001 Certified


mblies Voltage Controlled Oscillators

IQ Modulators/Demodulators

PROUDLY MADE IN THE USA




Contact the Vari-L Sales Department for your special microwave and RF component assembly needs.



## POWER CURVE

#### OF NONLINEAR SIMULATION PERFORMANCE



#### Power, Accuracy and Speed.

That's what you get with Eagleware's new harmonic balance simulator, HARBEC<sup>™</sup>. From real-time tuning, to application of artificial intelligence techniques, to co-simulation with electromagnetics, HARBEC does it all ... with a powerful set of features that includes:

#### **Robust Simulation**

- unlimited, arbitrary circuit topology
- wide range of nonlinear device models (diodes, JFET, BJT, MOSFETS, MESFETS)
- wide range of sources (voltage, power, current, waveform)
- DC analysis and optimization
- unlimited tone harmonic balance analysis and optimization

#### **High Performance Design**

- Al performance optimization
- fast tuning

EM Co-simulation
Spice Model Import
Extensive Parts Library
Equations and Post Processing

And it's fully integrated into the GENESYS suite of synthesis, S-parameter, electromagnetic and physical design tools.

#### So Grab a Seat and Hold On!

With nonlinear modules priced at \$4990, they're going fast. And so will your design.



Phone: +1 678-291-0995

www.eagleware.com

sales@eagleware.com

Fax: +1 678-291-0971

#### BRIEFS

- Adhesives Research has launched a Web site for its Electronics Business Unit as part of the company's corporate Web site at www.adhesiveresearch.com. The site provides information about the products, services and market applications offered by the unit, as well as links to the company's product catalog.
- Anritsu Company's new Web site, www.us.anritsu.com, offers information on the company's communications test solutions, optical and microwave components and devices, network solutions and industrial automation products.
- Vicor has introduced Power Express™, a service for rapid delivery of production quantities of its products. Most products are now eligible for Power Express and will be available with lead times of less than four weeks. Vicor plans to expand the service to include the company's entire product line.
- KNÜRR Group of Munich, Germany, has announced the acquisition of Quante's production facility in Newmarket, Cambridgeshire, UK. The UK site will manufacture KNÜRR's leading edge Miracle 19 inch racks and outdoor enclosure systems and provide integration services for its communication OEM customers.
- IMAPS, the International Microelectronics and Packaging Society, has announed that its Industry Guide is now available electronically and free of charge at www.imaps.org/indguide. The guide, a comprehensive listing of products and services for over 600 organizations, provides a searchable database of microelectronics and packaging companies.

Submit information for our News section to: Shannon O'Connor, Applied Microwave & Wireless, 630 Pinnacle Court, Norcross, GA, 30071; Fax: 770-448-2839; E-mail: amw@amwireless.com.

## Andrew to supply communications system for Madrid airport-area metro stations

Andrew Corporation has been selected by the Madrid Metro as the supplier of a distributed communications system to be used in rail stations in the area around Barajas Aeropuerto, the international airport in Madrid, Spain.

The new system will support TETRA and GSM 900/1800 communications within the public areas of the airport line metro stations and adjoining running tunnels. It can also be upgraded for future UMTS technology, the next generation of mobile communications. The system is scheduled to be installed and operational by July 2001.

The system will provide wireless communications for the Madrid Metro's existing Mar de Cristal, Campo de las Naciones, Barajas Aeropuerto and Barajas Pueblo sta-



Andrew Corporation will supply a distributed communications system for rail stations in and around Madrid's airport.

tions and their adjoining tunnels.

Andrew Corporation, located in Orland Park, IL, supplies communications systems equipment and services worldwide.

#### NEC to spin off semiconductor division

NEC Corporation plans to spin off its Compound Semiconductor Device Division into a new company, effective October 2001. NEC will retain full ownership of the new enterprise.

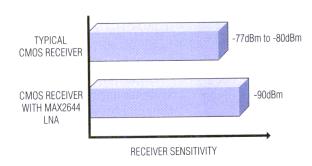
The new company will operate on a fabless semiconductor company business model and will be headquartered in Kawasaki, Kanagawa Prefecture, Japan. Manufacturing will initially be done at current NEC and contractor facilities.

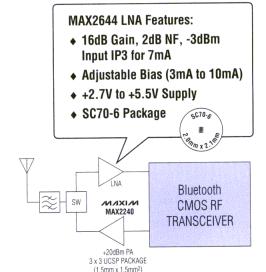
NEC is based in Tokyo, Japan. Its Compound Semiconductor Device Division designs and manufactures silicon and GaAs RF and microwave semiconductor devices, as well as optical semiconductor devices.

## OFDM Forum, CABA sign reciprocal membership agreement

The OFDM Forum, an association organized to promote a single-standard for high-speed wireless communications, has signed a reciprocal membership agreement with

the Continental Automated Buildings Association (CABA).


The reciprocal membership is most applicable to the forum's LAN, PAN and HMM working group, which is focused on improving existing standards and facilitating the acceptance of Orthogonal Frequency Division Multiplexing as the technology of choice for the wireless LAN, PAN and home multi-media markets. In addition, the forum will be able to participate in CABA's Standards Committee, whose main objective is to facilitate and encourage industry-wide interoperability for protocols and standards.


The OFDM Forum is a market development association comprised of hardware manufacturers, software firms, telecommunications companies and other users interested in OFDM technology in wireless applications.

CABA's mission is to encourage the development, promotion and adoption of business opportunities in the home and building automation industry.

# INDUSTRY'S SMALLEST 2.4GHz LNA INCREASES BLUETOOTH RECEIVER SENSITIVITY TO -90dBm

The MAX2644 2.4GHz SiGe LNA is internally matched to  $50\Omega$  at the output, saving an inductor and capacitor required in other LNA IC solutions. Total board space required is only  $7\text{mm}^2$ —ideal for space-sensitive Bluetooth<sup>TM</sup> modules.





## A Family of Six High-Performance SiGe LNAs are Available in the Ultra-Small SC70-6 Package, Covering Major Wireless Applications from 800MHz to 2700MHz

|     | PART       | TEST FREQUENCY<br>(MHz) | GAIN<br>(dB) | NOISE<br>FIGURE | INPUT IP3<br>(dBm) | ADJUSTABLE<br>BIAS | APPLICATIONS                        |
|-----|------------|-------------------------|--------------|-----------------|--------------------|--------------------|-------------------------------------|
|     | MAX2642/43 | 900                     | 16.7         | (dB)            | 0                  | Yes                | 900MHz ISM, cellular, PMR, cordless |
|     | WAX2042/43 | 300                     | 10.7         | 1.0             |                    |                    | Bluetooth, 802.11, HomeRF™, WCDMA,  |
| NEW | MAX2644    | 2450                    | 16           | 2.0             | -3                 | Yes                | satellite radio, MMDS               |
| NEW | MAX2654    | 1575                    | 15           | 1.5             | -7                 | _                  | GPS                                 |
| NEW | MAX2655    | 1575                    | 14           | 1.7             | +3                 | Yes                | GPS in cellular phones              |
| NEW | MAX2656    | 1960                    | 13.5         | 1.9             | +1.5               | Yes                | PCS, DCS, WLL                       |

Bluetooth is a registered trademark of the Bluetooth Special Interest Group. HomeRF is a registered trademark of the HomeRF Working Group.



## FREE Wireless Design Guide—Sent Within 24 Hours! Includes: Reply Cards for Free Samples and Data Sheets

CALL TOLL-FREE 1-800-998-8800 for a Design Guide or Free Sample 6:00 a.m. – 6:00 p.m. Pacific Time



www.maxim-ic.com



2000 EDITION!
FREE FULL-LINE DATA CATALOG
ON CD-ROM





Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Distributed by Maxim Distribution, Arrow, Avnet Electronics Marketing, CAM RPC, Digi-Key, Elmo, Nu Horizons, and Zeus.

Distributed in Canada by Arrow and Avnet Electronics Marketing.

MAXIM is a registered trademark of Maxim Integrated Products. © 2001 Maxim Integrated Products.

## Freshfield helps Orange UK optimize network performance

Freshfield Communications Ltd. has completed a network measurement campaign on behalf of Orange UK, assessing the performance of all four GSM personal communications networks on selected mainline railways in the UK.

The campaign covered 1,500 calls on each of the four UK GSM net-

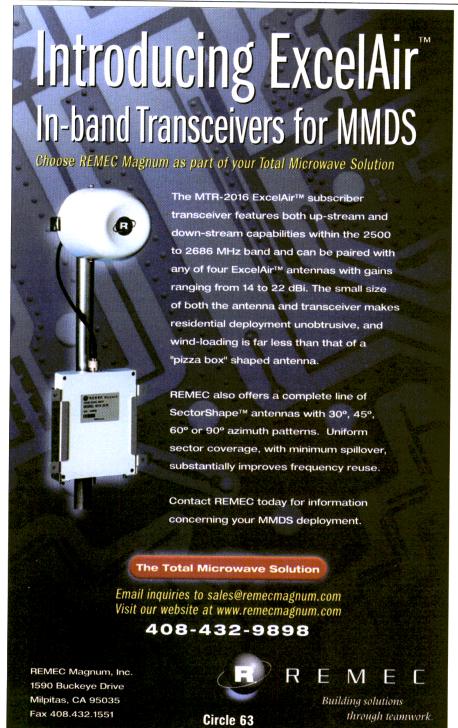
works along the main rail routes in several metropolitan areas. To simulate peak usage hours, calls were monitored continuously from 8 a.m. until 8 p.m.

Using Optima, Freshfield's multiband (GSM 900 and 1800 MHz) network monitoring and optimization tool, network performance was measured and assessed for typical rail passengers. Data from all four networks were simultaneously monitored without disruption to passengers or train service.

Freshfield, based in Surrey, UK, is a wireless consulting company offering solutions for network operators and infrastructure vendors.

#### Superconductor Technologies, Paradigm announce alliance

Superconductor Technologies Inc. and Paradigm Wireless Systems, Inc., have signed a strategic alliance under which they will jointly develop complete solutions that combine their respective technologies to deliver the first balanced link solutions to wireless operators seeking to optimize their networks.

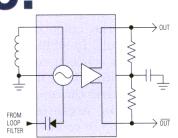

Superconductor Technologies' systems improve the signal between the cell phone and the cellular tower or base station, while Paradigm's power amplifiers improve the signal between the base station and the cell phone. The two companies have combined their complementary technologies to create their first joint product, SuperLink™, which enables carriers to handle an additional 50 percent or more traffic on their existing networks, with their existing spectrum.

Superconductor Technologies, based in Santa Barbara, CA, manufactures superconducting products for wireless networks. Paradigm, based in Irvine, CA, provides multicarrier power amplifiers and RF technologies for wireless networks.

## Honeywell debuts products using SOI technology

The Honeywell Solid State Electronics Center (SSEC) has introduced a variety of customized RF and microwave design and foundry services for designers and manufacturers in the wireless communication and high-speed fiber optic networks.

The Honeywell SSEC, located in Plymouth, MN, manufactures integrated circuits, sensors and electronic components for military, space and commercial applications.




## **BUILD YOUR 45MHz TO 650MHz OSCILLATOR IN** 5 **MINUTES**

**STEP** Choose the appropriate Maxim part from table below and calculate the inductance

Insert inductor STFP into EVKIT. using the formula in the data sheet.

Test oscillation STEP frequency. Done.



- Easy to Use
- ◆ 2.7V to 5.5V Supply
- ◆ On-Chip Temperature **Compensated Bias**
- Differential or Single-Ended Output
- ◆ Up to -8dBm Output Power
- Ultra-Small Implementation Size
- Low Supply Current

The MAX2605-MAX2609 series of oscillators contain varactors, core transistors, bias circuity, coupling capacitors, and a differential output buffer in a miniature SOT23-6 package. The internal varactor's tuning range is factory tested so that startup and proper operation over temperature are guaranteed.

| PART    | FREQUENCY RANGE<br>(MHz) | SUPPLY CURRENT (mA) | PHASE NOISE @ 100kHz OFFSET (dBc/Hz) |
|---------|--------------------------|---------------------|--------------------------------------|
| MAX2605 | 45 to 70                 | 1.9                 | -117                                 |
| MAX2606 | 70 to 150                | 2.1                 | -112                                 |
| MAX2607 | 150 to 300               | 2.1                 | -107                                 |
| MAX2608 | 300 to 500               | 2.7                 | -100                                 |
| MAX2609 | 500 to 650               | 3.6                 | -93                                  |



#### FREE Wireless Design Guide—Sent Within 24 Hours! **Includes: Reply Cards for Free Samples and Data Sheets**

CALL TOLL-FREE 1-800-998-8800 for a Design Guide or Free Sample 6:00 a.m. - 6:00 p.m. Pacific Time



2000 EDITION! FREE FULL-LINE DATA CATALOG ON CD-ROM



Get Price, Delivery, and Place Orders Online at www.maxim-ic.com

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194. Distributed by Maxim Distribution, Arrow, Avnet Electronics Marketing, CAM RPC, Digi-Key, Elmo, Nu Horizons, and Zeus. Distributed in Canada by Arrow and Avnet Electronics Marketing.

Is a registered trademark of Maxim Integrated Products. © 2001 Maxim Integrated Products.

#### BUSINESS AND FINANCE

#### **IMPSAT signs agreement with Nextel**

IMPSAT Fiber Networks, Inc., has signed a \$22 million dollar agreement with Nextel Argentina under which IMPSAT will provide Lambda connectivity over its broadband network to support Nextel's transmission capacity for its voice and value added services.

This capacity will allow Nextel Argentina to extend the coverage of its digital mobile services to the principal commercial centers in Argentina, linking Buenos Aires and Mendoza along two fully redundant routes that also connect the cities of Santa Fe, Rosario, Cordoba and San Luis. In addition, IMPSAT will provide two 155 Mbps connections over complementary routes to smaller cities outside the main footprint.

The agreement marks the commencement of Lambda Channel offering in Argentina and confirms the Company's leadership in connectivity service provision for telecommunications carriers.

IMPSAT, based in Buenoe Aries, Argentina, provides Internet and private network integrated data and voice telecommunications services in Latin America.

#### Andrew receives three antenna contracts

Andrew Corporation has been awarded antennarelated contracts with Siemens, Loxley Ltd. and Alan Dick and Company.

- The Siemens contract calls for Andrew to supply an ALP Series II slotted antenna for the Bangkok Entertainment Company in Bangkok, Thailand. The 12bay, medium power ALP antenna is the first and smallest of its type to be sold in Thailand.
- · Under the agreement with Loxley Ltd., a Thai conglomerate, Loxley will equip the Royal Thai Navy with three Andrew HF antennas to boost ship-to-shore communications. The installation is due for completion in mid-2001.
- · Andrew has agreed to market Alan Dick and Company's television transmitting antennas in North America. Alan Dick is Britain's leading supplier of masts, towers and antenna systems

Andrew Corporation, located in Orland Park, IL, is a global supplier of communications systems equipment and services.

### High Power RF MOSFETS

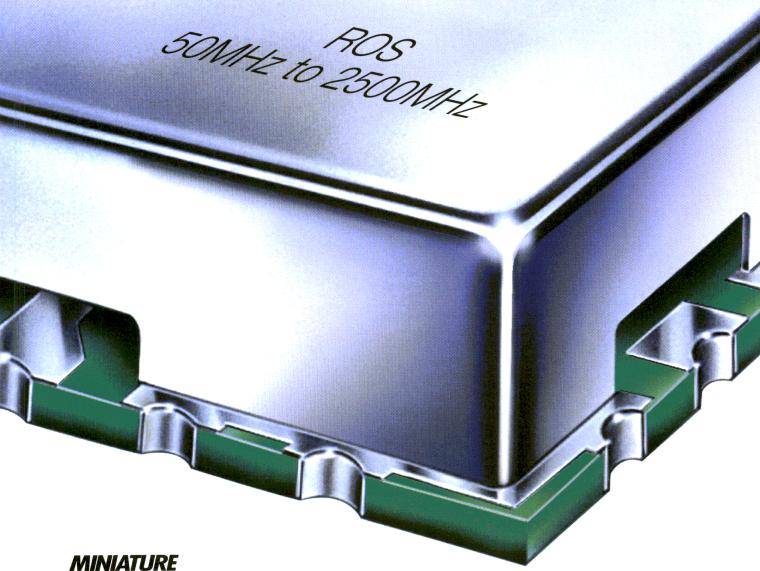


- Frequencies to 120 MHz
- Superior Ruggedness
- **High Voltage Operation** up to 250 Volts
- **Lowest Cost per RF Watt**

| Part#  | V <sub>DD*</sub><br>Volt | Freq | P <sub>OUT</sub><br>Watt | R <sub>ejc</sub> | T <sub>j(max)</sub><br>deg °C | Class |
|--------|--------------------------|------|--------------------------|------------------|-------------------------------|-------|
| ARF446 | 250                      | 65   | 115                      |                  |                               |       |
|        |                          |      |                          | 0.55             | 150                           | C/D/E |
| ARF448 | 125                      | 65   | 115                      | 0.55             | 150                           | C/D/E |
| ARF449 | 125                      | 100  | 83                       | 0.76             | 150                           | C/D/E |
| ARF450 | 125                      | 120  | 325                      | 0.26             | 200                           | C/D/E |
| ARF460 | 125                      | 60   | 125                      | 0.50             | 150                           | AB/C  |
| ARF461 | 250                      | 60   | 125                      | 0.50             | 150                           | AB/C  |

\*DC Breakdown Voltage is 4 Times The Rated DC Operating Voltage

Download these and other data sheets at


www.Advancedpower.com



(541) 382-8028 Phone:

Fax: (541) 388-0364

Books Books plus video courses and software, too! CALL TODAY TO GET **OUR NEW** PUBLISHING CATALOG! Tel: 770-449-6774 Fax: 770-448-2839 OR VISIT US ON THE WEB: www.noblepub.com Circle 39

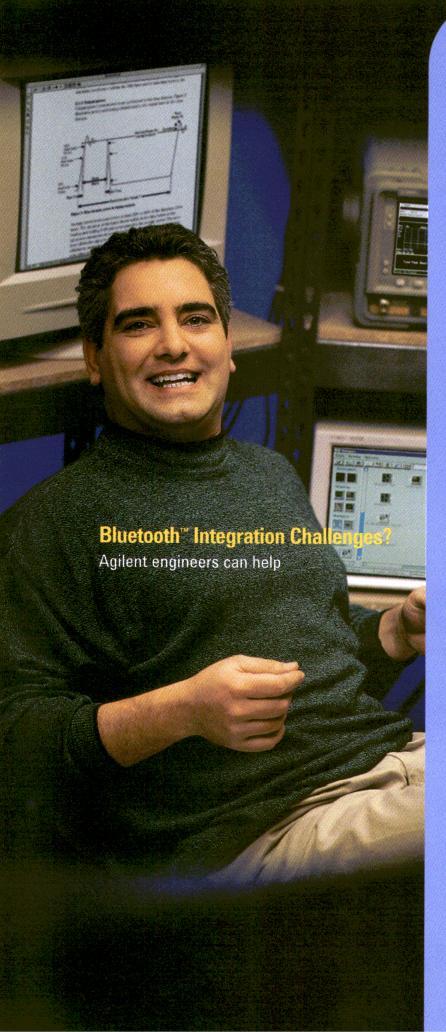


## SURFACE MOUNT VCO's \$1295

The big news is Mini-Circuits miniature family of 50 to 2500MHz ROS voltage controlled oscillators! Each unit is housed in a shielded 0.5"x0.5"x0.18" non-hermetic industry standard package for highly efficient wash-thru capability, reliability, and cost effectiveness. Models with "PV" suffix typically operate from a 5 volt power supply and require 5V tuning voltage to cover the frequency range. This makes them ideal for integration with monolithic PLL chips and commercial synthesizers in the 180 to 1605MHz band. The series also features broad band 12V models optimized for 50 to 2500MHz linear tuning, up to one octave band widths, and low phase noise.

Support your customers demands for smaller size and better performance, switch to ROS VCO's today!

ACTUAL SIZE


Mini-Circuits...we're redefining what VALUE is all about!

| Model                                                                      | Freq. Range<br>(MHz)                                                     | V <sub>tune</sub><br>(V)<br>Max. | Phase<br>Noise*<br>Typ.                      | Harmonics<br>(dBc)<br>Typ.             | **<br>Voltage<br>V                    | Current<br>(mA)<br>Max.          | Price<br>\$ea.<br>(5-49)                           |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------|
| ROS-205PV<br>ROS-285PV<br>ROS-660PV<br>ROS-725PV<br>ROS-900PV<br>ROS-960PV | 180-210<br>245-285<br>640-660<br>710-725<br>810-900<br>890-960           | 555555                           | -110<br>-100<br>-107<br>-105<br>-102<br>-102 | -30<br>-20<br>-17<br>-19<br>-25<br>-27 | 5 5 5 5 4.5 4.5                       | 15<br>20<br>15<br>15<br>12<br>12 | 17.95<br>17.95<br>19.95<br>19.95<br>19.95<br>19.95 |
| ROS-1000PV<br>ROS-1435PV<br>ROS-1600PV<br>ROS-1605PV<br>ROS-100<br>ROS-150 | 900-1000<br>1375-1435<br>1520-1600<br>1500-1605<br>50-100<br>75-150      | 5<br>5<br>5<br>17<br>18          | -104<br>-101<br>-100<br>-98<br>-105<br>-103  | -33<br>-26<br>-26<br>-17<br>-30<br>-23 | 5<br>5<br>3.3<br>12<br>12             | 22<br>20<br>25<br>16<br>20<br>20 | 19.95<br>19.95<br>18.95<br>19.95<br>12.95<br>12.95 |
| ROS-200<br>ROS-300<br>ROS-400<br>ROS-535<br>ROS-765<br>ROS-1000V           | 100-200<br>150-280<br>200-380<br>300-525<br>485-765<br>900-1000          | 17<br>16<br>16<br>17<br>16<br>12 | -105<br>-102<br>-100<br>-98<br>-95<br>-102   | -30<br>-28<br>-24<br>-20<br>-27<br>-30 | 12<br>12<br>12<br>12<br>12<br>12<br>5 | 20<br>20<br>20<br>20<br>22<br>25 | 12.95<br>14.95<br>14.95<br>14.95<br>15.95          |
| ROS-1100V<br>ROS-1121V<br>ROS-1410<br>ROS-1720<br>ROS-2500<br>ROS-1200W    | 1000-1100<br>1060-1121<br>850-1410<br>1550-1720<br>1600-2500<br>612-1200 | 12<br>11<br>11<br>12<br>14<br>18 | -103<br>-111<br>-99<br>-101<br>-90<br>-97    | -26<br>-11<br>-8<br>-17<br>-14<br>-28  | 5<br>12<br>12<br>12<br>12             | 25<br>30<br>25<br>25<br>25<br>40 | 15.95<br>15.95<br>19.95<br>19.95<br>21.95<br>24.95 |
| ROS-1700W<br>ROS-2150VW<br>ROS-2160W                                       | 770-1700<br>970-2150<br>1160-2160                                        | 24<br>25<br>20                   | -100<br>-96<br>-97                           | -25<br>-15<br>-11                      | 12<br>5<br>10                         | 40<br>25<br>30                   | 24.95<br>29.95<br>24.95                            |

\*Phase Noise: SSB at 10kHz offset, dBc/Hz. \*\*Specified to fourth.

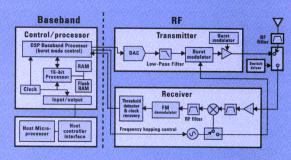






It probably started with a conversation over in marketing: "Bluetooth wireless technology is the next big thing! We have to put it in all our products! Details? Bah, all you do is add an antenna. The engineers will figure it out. Let's go see if they're finished yet."

And now you and a few thousand other engineers are figuring out that *Bluetooth* integration is not a trivial task. From baseband DSP to RF interference, you've got an integration challenge worthy of legendary King Harald himself.


Welcome to the wild world of RF. New to RF? We've pooled the talents of our digital, DSP and RF experts to identify the most important signal checks you'll need to make when integrating *Bluetooth* designs. Our online resources include everything from an RF basics seminar to advanced measurement techniques.

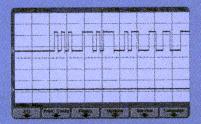
**Something for the RF experts, too.** If you have the luxury of approaching *Bluetooth* from an RF background, we can offer advice on the most-efficient test procedures and toolsets to tackle a wide range of *Bluetooth* measurements.

**The Bluetooth big picture.** Most of the Bluetooth work we're seeing today involves the integration of a Bluetooth module into a new product design:

- Evaluating module performance and characterizing interoperability
- Understanding host-module integration issues
- Designing and debugging the host-module interface
- · Conducting pre-qualification RF testing
- · Getting Bluetooth Qualification
- · Manufacturing quality products

Some of the more interesting problems show up in the second stage, as you bring the RF transceiver into your host products.




Watch out for some interesting interoperability problems when you integrate a Bluetooth module into your host device



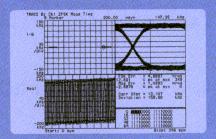
u.s. 1-800-452-4844, ext. 7456 canada 1-877-894-4414, ext. 7471

Baseband signal integration. Challenges here include verifying transmission and receipt of data packets, viewing the actual data values transmitted, quantifying system bottlenecks, identifying logic errors, and resolving DSP and mixed-signal issues.

For instance, once you've found the preamble, you can identify the entire bit stream, including the access code, header and payload. Learn more in our free *Bluetooth* baseband application note.



The first two pulses in this idealized transmit signal correspond to the 0101 pattern of the preamble; the access code follows immediately after


RF receiver tests. RF receiver performance is key to both *Bluetooth* qualification and overall product performance. For example, a sensitive radio that is immune to interference will reduce file transfer times and therefore increase battery life. You need to make sure the RF receiver will not be adversely impacted by the harmonics of high-frequency digital signals or other noise sources likely to be present in your system.

Receiver performance is tested in a number of ways for qualification, including carrier/interference and blocking tests. You probably won't need to run all the tests if you're integrating someone else's module, but they can be complicated so clear information and simplified procedures are important.

**RF transmitter tests.** The *Bluetooth* specification covers a wide range of transmitter tests, some to insure interoperability between *Bluetooth* devices (e.g., modulation characteristics) and others to meet regulatory limits (e.g., spurious emissions). Given the concerns about interference with other wireless systems, output spectrum tests are also important.

Integrating a module can create problems that affect transmitter performance, sometimes in unexpected ways. For example, power supply ripple coupled through your system can degrade the modulation characteristics.

You must be able to show that your device stays within both *Bluetooth* and regulatory limits, and the more of this work you can do on your



Bluetooth measurement tools range from powerful design analysis to fast, automated tests for the production line. Above, a modulation characteristics test verifies proper performance of the modulation circuitry to ensure reliable data transfer over the Bluetooth communication link.



At left, an automated test combines pass/fail indications with numerical readouts

design bench, the better. Some of the tests are complex and potentially time-consuming to understand and perform. Our free online application resources can help you look for and fix problems quickly.

Get the complete *Bluetooth* test story—FREE. Talk to one of our *Bluetooth* measurement specialists to learn more or tap into our free technical resources at www.agilent.com/find/bt.

Among the features you'll find there:

- A comprehensive measurement guide: Performing Bluetooth RF Measurements Today featuring descriptions and examples of the many RF measurements you might need
- Interactive measurements that show some key Bluetooth measurements in action, starting with frequency drift and frequency settling—explore these real-life measurements before you need to make them on your own system

We can't do much about your enthusiastic friends in marketing, but we can definitely help you through the *Bluetooth* integration experience.

Visit www.agilent.com/find/bt for a FREE Bluetooth CD-ROM packed with application notes, measurement tips and solution guides.

Circle 24



#### **Agilent Technologies**

## A Comparison of Various Bipolar Transistor Biasing Circuits

An up-to-date review of bias techniques

#### By Al Ward and Bryan Ward Agilent Technologies

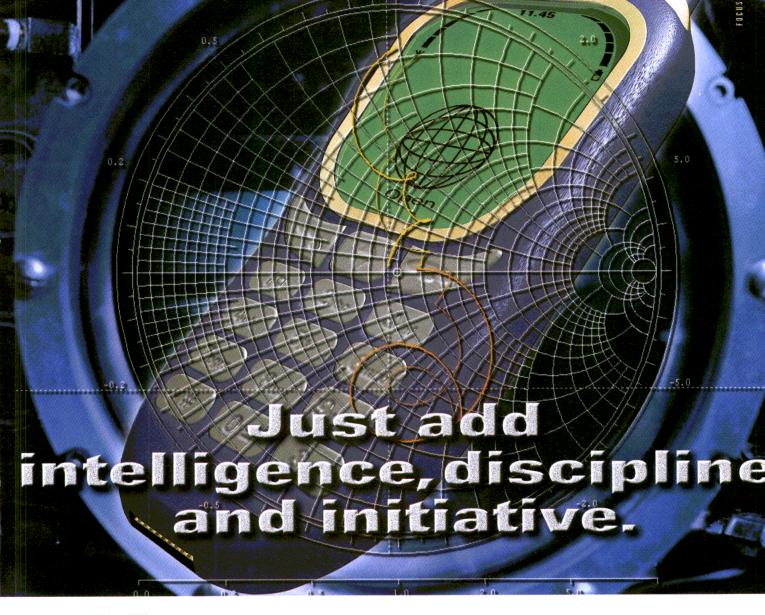
he bipolar junction transistor (BJT) is often used as a low noise amplifier in cellular, PCS and pager applications because of its low cost. With a minimal number of external matching networks, the BJT can produce an LNA with RF performance considerably better than an MMIC. Of equal importance is the DC performance. Although the device's RF performance may be quite closely controlled, the variation in device DC parameters can be quite significant because of normal process variations.

It is not unusual to find a 2 or 3 to 1 ratio in device  $h_{FE}$ . Variation in  $h_{FE}$  from device to device will generally not appear as a difference in RF performance. In other words, two devices with widely different  $h_{FE}$  can have similar RF performance, as long as the devices are biased at the same  $V_{CE}$  and  $I_C$ . The primary purpose of the bias network is to keep  $V_{CE}$  and  $I_C$  constant as DC parameters vary from device to device.

The bias circuitry is often overlooked because of its apparent simplicity. With a poorly designed fixed bias circuit, the variation in  $I_C$  from lot to lot can have the same maximum to minimum ratio as the  $h_{FE}$  variation from lot to lot. If there is no compensation  $I_C$  will double when  $h_{FE}$  is doubled. It is the task of the DC bias circuit to maximize the circuit's tolerance to  $h_{FE}$  variations. In addition, transistor parameters can vary over temperature causing a drift in  $I_C$  at temperature. The low power supply voltages typically available for handheld applications also make it more difficult to design a temperature stable bias circuit.

One solution to the biasing dilemma is the use of active biasing. Active biasing often makes use of an IC or a PNP transistor and a variety of resistors, effectively setting  $V_{CE}$  and  $I_C$  regard-

less of variations in device  $h_{FE}$ . Although the technique of active biasing would be the best choice for control of device to device variability and over temperature variations, associated costs are usually high.


Other biasing options include various forms of passive biasing. This article discusses various passive biasing circuits, including their advantages and disadvantages.

#### Various BJT passive bias circuits

Passive biasing schemes usually consist of two to five resistors properly arranged about the transistor. Various passive biasing schemes are shown in Figure 1. The simplest form of passive biasing is shown as Circuit #1 in Figure 1. The collector current  $I_C$  is simply  $h_{FE}$  times the base current  $I_B$ . The base current is determined by the value of  $R_B$ . The collector voltage  $V_{CE}$  is determined by subtracting the voltage drop across resistor  $R_C$  from the power supply voltage  $V_{CC}$ . As the collector current is varied, the  $V_{CE}$  will change based on the voltage drop across  $R_C$ . Varying  $h_{FE}$  will cause  $I_C$  to vary in a fairly direct manner. For constant  $V_{CC}$  and constant  $V_{BE}, I_C$  will vary in direct proportion to  $h_{FE}.$  For example, as  $h_{FE}$  is doubled, collector current,  $I_C$ , will also double. Bias circuit #1 provides no compensation for variation in device  $h_{FF}$ .

Bias circuit #2 provides voltage feedback to the base current source resistor  $R_B$ . The base current source is fed from the voltage  $V_{CE}$ , as opposed to the supply voltage  $V_{CC}$ . The value of the base bias resistor  $R_B$  is calculated based upon nominal device  $V_{BE}$  and the desired  $V_{CE}$ . Collector resistor  $R_C$  has both  $I_C$  and  $I_B$  flowing through it.

The operation of this circuit is best explained

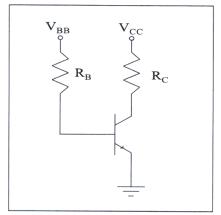


Want to know the secret of success in the land of Linux and Nokia? It's APLAC. An industrial-strength simulation technology that combines the functionality of Spice with the utility of an advanced RF simulator. APLAC, and only APLAC, provides the accurate IC- and board-level models and precise methods to analyze non-linear circuit behavior demanded by top RF and analog designers. The only approach up to the

complex design challenges ahead: 3G, Bluetooth, and beyond.

APLAC gives you something unique - the freedom to do things right. All you do is supply the three ingredients mentioned above.

To learn more about APLAC, why not download a student version from our website <a href="www.aplac.com">www.aplac.com</a> and contact us at APLAC Solutions.






APLAC Solutions Corporation
Atomitie 5 C, FIN-00370 HELSINKI, Finland
tel. +358-9-540 450 00
www.aplac.com e-mail: sales@aplac.com

APLAC Solutions Inc 320 Decker Dr, Suite 100, Irving, TX 75062 tel. 972-719-2562 www.aplac.com e-mail: sales@aplac.com

#### BIPOLAR BIASING



▲ Figure 1(a). Circuit #1: nonstabilized BJT bias network.

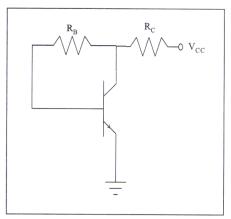



Figure 1(b). Circuit #2: voltage feedback BJT bias network.

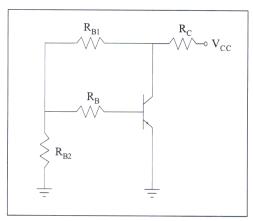



Figure 1(c). Circuit #3: voltage feedback with current source BJT bias network.

exception that the series current source

resistor  $R_B$  is omitted. This circuit is seen in bipolar power amplifier design

with resistor  $R_{B2}$  replaced by a series silicon power diode providing temperature compensation for the bipolar device. The

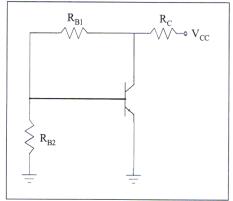



Figure 1(d). Circuit #4: voltage feedback with voltage source BJT bias network.

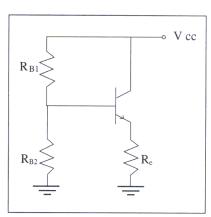



Figure 1(e). Circuit #5: emitter feedback BJT bias network.

current flowing through resistor  $R_{B1}$  is shared by both resistor  $R_{B2}$  and the base emitter junction  $V_{BE}$ . The greater the current through resistor  $R_{B2}$ , the greater the regulation of the base emitter voltage  $V_{BE}$ .

Bias circuit #5 is the customary textbook circuit for biasing BJTs. A resistor is used in series with the device emitter lead to provide voltage feedback. This

circuit ultimately provides the best control of  $h_{FE}$  variations from device to device and over temperature. The disadvantage of this circuit is that the emitter resistor must be properly bypassed for RF. The typical bypass capacitor often has internal lead inductance which can create unwanted regenerative feedback. The feedback can create device instability. Despite the problems associated with using the emitter resistor technique, this biasing scheme generally provides the best control on  $h_{FE}$  and over temperature variations.

The sections that follow begin with a discussion of the BJT model and its temperature dependent variables. From the basic model, various equations are developed to predict the device's behavior over  $h_{FE}$  and temperature variations. This article is an update to the original article written by Kenneth Richter of Hewlett-Packard [2] and Hewlett-Packard Application Note 944-1 [3].

as follows. An increase in  $h_{FE}$  will tend to cause  $I_C$  to increase. An increase in  $I_C$  causes the voltage drop across resistor  $R_C$  to increase. The increase in voltage across  $R_C$  causes  $V_{CE}$  to decrease. The decrease in  $V_{CE}$  causes  $I_B$  to decrease because the potential difference across base bias resistor  $R_B$  has decreased. This topology provides a basic form of negative feedback which tends to reduce the amount that the collector current increases as  $h_{FE}$  is increased.

Bias circuit #3 has been discussed in past literature but predominately when very high  $V_{CC}$  (> 15 volts) and  $V_{CE}$  (> 12 volts) were used [1]. The voltage divider network consisting of  $R_{B1}$  and  $R_{B2}$  provide a voltage divider from which resistor  $R_B$  is connected. Resistor  $R_B$  then determines the base current.  $I_B$  times  $h_{FE}$  provides  $I_C$ . The voltage drop across  $R_C$  is determined by the collector current  $I_C$ , the base current  $I_B$  and the current consumed by the voltage divider, consisting of  $R_{B1}$  and  $R_{B2}$ . This circuit provides similar voltage feedback to that of bias circuit #2.


Bias circuit #4 is similar to bias circuit #3 with the

#### **BJT** modeling

The BJT is modeled as two current sources, as shown in Figure 2. The primary current source is  $h_{FE}I_B$ . In parallel is a secondary current source  $I_{CBO}$  (1+  $h_{FE}$ ) that

## **SURFACE MOUNT** SPDT SWITCHES

At Your Finger Tip



#### **SPECIFICATIONS**

SR-2min-min

| SWITCH TYPE           |      | SI  | PDT    |         |
|-----------------------|------|-----|--------|---------|
| Frequency (GHz)       | DC-2 | 2-5 | 5-12.4 | 12.4-18 |
| Insertion Loss (Max.) | 0.2  | 0.3 | 0.4    | 0.7     |
| VSWR (Max.)           | 1.3  | 1.4 | 1.5    | 1.7     |
| Isolation (Min.)      | 70   | 60  | 50     | 40      |

Power Rating, RF Cold Switching:

Impedance: Operating Power: (Failsafe): 10 Watts 50 ohms

25° C (ma nominal) 12 Vdc at 130 ma 28 Vdc at 75 ma

Connectors, RF and Power:

.018 DIA. Pins

Life: Switching Time: Environmental Conditions:

Operating Mode: Switching Sequence: Weight:

Size:

0.6 oz .625" x .625" x .40"H

MIL-S-3928

\* New Latching SPDT versions now available

a single pole two position type. It combines high performance in a compact configuration. The switch provides extremely high reliability, long life and excellent

electrical performance. Power consumption is less than half that of miniature connectorized switches. The SR Series is available with a choice of four different operating frequencies, two coil voltages, and two different pin configurations. RLC Electronics is ISO 9002 Certified.

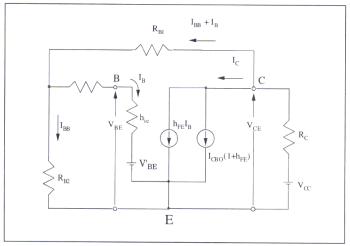


1,000,000 operations

15 milliseconds max.

Failsafe & Latching\*

Break before make




#### RLC ELECTRONICS, INC.

83 Radio Circle, Mount Kisco, New York 10549 • Telephone: 914-241-1334 • Fax: 914-241-1753 e-mail: sales@rlcelectronics.com • www.rlcelectronics.com

RLC is your complete Microwave Component source... Switches, Filters, Power Dividers, Couplers, Terminations, Attenuators, DC Blocks, Bias Tees & Detectors

#### BOPOLAR BOASONG



▲ Figure 2. Gummel-Poon model of BJT with voltage feed-back and constant base current source network.

describes the leakage current flowing through a reverse biased PN junction.  $I_{CBO}$  is typically  $1\times 10^{-7}$  A at 25 degrees C for an Agilent Technologies HBFP-0405 transistor.  $V_{BE}$  is the internal base emitter voltage with  $h_{ie}$  representing the equivalent Hybrid PI input impedance of the transistor.  $h_{ie}$  is also equal to  $h_{FE}/\lambda I_C$  where  $\lambda=40$  at +25 degrees C.  $V_{BE}$  will be defined as measured between the base and emitter leads of the transistor. It is equivalent to  $V_{BE}+I_Bh_{ie}$ .  $V_{BE}$  is approximately 0.78 volts at 25 degrees C for the HBFP-0405 transistor.

The device parameters that exhibit the greatest change as temperature is varied are  $h_{FE}$ ,  $V_{BE}$ , and  $I_{CBO}$ . These temperature dependent variables have characteristics which are process dependent and fairly well understood.  $h_{FE}$  typically increases with temperature at the rate of 0.5 percent/degrees C.  $V_{BE}$  has a typical negative temperature coefficient of -2 mV/degrees C. This indicates that  $V_{BE}$  decreases 2 mV for every degree increase in temperature.  $I_{CBO}$  typically doubles for every 10 degree C rise in temperature. Each one of these parameters contributes to the net resultant change in collector current as temperature is varied.

For each bias network shown in Figure 1, several sets of simplified circuit equations have been generated to allow calculation of the various bias resistors. These are shown in Figures 3, 4, 5, 6 and 7. Each of the bias resistor values are calculated based on various design parameters such as desired  $I_C$ ,  $V_{CE}$ , power supply voltage  $V_{CC}$  and nominal  $h_{FE}$ .  $I_{CBO}$  and  $h_{ie}$  are assumed to be zero for the basic calculation of resistor values.

Additional information, usually provided by the designer, is required for the three circuits that use the voltage divider consisting of  $R_{B1}$  and  $R_{B2}$ . For the bias network that uses voltage feedback with current source, the designer must choose the voltage across  $R_{B2}$  ( $V_{RB2}$ ) and the bias current through resistor  $R_{B2}$ , which will be termed  $I_{RB2}$ . If  $V_{CE} > V_{RB2} > V_{BE}$ , then a suggested  $V_{RB2}$ 

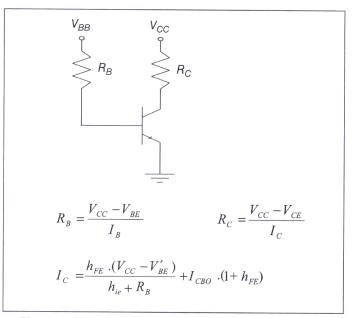



Figure 3. Equations for nonstabilized bias network.

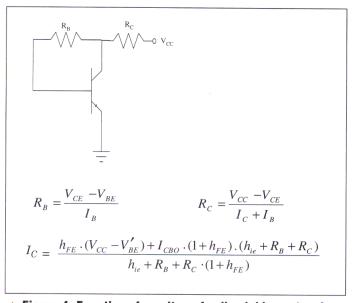



Figure 4. Equations for voltage feedback bias network.

would be 1.5 volts and a suggested  $I_{RB2}$  would be 10 percent of  $I_C$ , or 0.5 mA.

The voltage feedback with a voltage source network and the emitter feedback network also require that the designer choose  $I_{RB2}$ . The ratio of  $I_C$  to  $I_{RB2}$  can play a major role in bias stability.

An equation was then developed for each circuit that calculates collector current,  $I_C$ , based on nominal bias resistor values and typical device parameters, including  $h_{FE}$ ,  $I_{CBO}$ , and  $V_{BE}$ . MATHCAD 7 was used to help develop the  $I_C$  equation. Although the  $I_C$  equation begins simply, it develops into a rather lengthy equation

## HIGH POWER, HIGH PERFORMANCE

The demand for increased bandwidth and DWDM applications requires fiber optic connectors and assemblies with greater performance. HUBER+SUHNER offers the highest power and performance fiber optic products available

#### High-Power E2000

- Full metal protection flap and integrated metal diaphragm
- Positive locking design prevents accidental disconnection
- Easy handling even with high packing densities or poor access or visibility
- Zirconia full ceramic ferrule
- User selectable color and mechanical coding system

#### **FiberGate**

- 4 individually aligned terminations in the space of a single SC
- Typical insertion loss of 0.09dB
- Integrated automatic dust protection
- Full floating, snap on mounting
- 1.25mm full ceramic ferrules

#### Cable Assemblies

 Highest reproducible quality due to large-scale manufacturing processes

Guaranteed long-term stability, lowest optical insertion and return loss, and secure connections every time. That's HUBER+SUHNER.



**INNOVATIVE SOLUTIONS TO COUNT ON** 

U.S.A.

802-878-0555 613-271-9771 www.hubersuhnerinc.com

#### BIPOLAR BIASING

$$R_{B1} = \frac{V_{RB2} - V_{BE}}{I_B} \qquad R_C = \frac{V_{CC} - V_{CE}}{I_C + I_{B2} + I_B}$$

$$R_{B1} = \frac{V_{CE} - V_{RB2}}{I_{B2} + I_B} \qquad R_{B2} = \frac{V_{RB2}}{I_{B2}}$$

$$R_{B1} = \frac{V_{CE} - V_{RB2}}{I_{B2} + I_B} \qquad R_{B2} = \frac{V_{RB2}}{I_{B2}}$$
Designer must choose  $I_{B2}$  and  $V_{RB2}$  such that  $V_{CE} > V_{RB2} > V_{BE}$ 

$$I_C = \left[ \frac{-V'_{BE} \cdot (R_{B1} + R_{B2} + R_C) - R_{B2} \cdot (R_C \cdot I_{CBO} \cdot (1 + h_{FE}) - V_{CC}}{(R_B + h_{ie}) \cdot (R_{B1} + R_{B2} + R_C) + R_{B2} \cdot (h_{FE} \cdot R_C + R_C + R_{B1})} \right] \cdot h_{FE} + I_{CBO} \cdot (1 + h_{FE})$$

Figure 5. Equations for voltage feedback with current source bias network.

for some of the more complicated circuits. MATHCAD helped to simplify this task.

#### Design example using the Agilent HBFP-0405 BJT

The HBFP-0405 transistor is used as a test example for each of the bias circuits. The HBFP-0405 is described in [4] as a low noise amplifier for 1800 to 1900 MHz applications. The HBFP-0405 will be biased at a  $V_{CE}$  of 2.7 volts and a drain current  $I_{C}$  of 5 mA. A power supply voltage of 3 volts will be assumed. The nominal  $h_{FE}$  of the HBFP-0405 is 80. The minimum is 50 while the maximum is 150. The calculated bias resistor values for each bias circuit are described in Table 1.

With the established resistor values,  $I_C$  is calculated based on minimum and maximum  $h_{FE}$ . The performance of each bias circuit with respect to  $h_{FE}$  variation is shown in Table 2. Bias circuit #1 clearly has no compensation for varying  $h_{FE}$ , allowing  $I_C$  to increase 85 percent as  $h_{FE}$  is taken to its maximum. Circuit #2 with very simple collector feedback offers considerable compensation due to  $h_{FE}$  variations allowing an increase of only 42 percent. Circuit #3 offers very little improvement over circuit #2. Circuit #4 provides considerable improvement in  $h_{FE}$  control by only allowing a 9 percent

increase in  $I_C$ . Circuit #4 offers an improvement over the previous circuits by providing a stiffer voltage source across the base emitter junction. As we will see later, this circuit has worse performance over temperature as compared to circuits #2 and #3. However, when both  $h_{FE}$  and temperature are considered, circuit #4 will appear to be the best performer for a grounded emitter configuration. As expected, circuit #5 provides the best control on  $I_C$  with varying  $h_{FE}$  allowing only a 5.4 percent increase in  $I_C$ . Results are power supply dependent, and with higher  $V_{CC}$ , results may vary significantly.

#### **BJT** performance over temperature

Since all three temperature dependent variables  $(I_{CBO},\,h_{FE}$  and  $V_{BE})$  exist in the  $I_C$  equation, differentiating the  $I_C$  equation with respect to each of the parameters provides insight into their effect on  $I_C$ . The partial derivative of each of the three parameters represents a stability factor. The various stability factors and their calculation are shown in Table 3. Each circuit has three distinctly different stability factors which are then multiplied times a corresponding change in either  $V_{BE},\,h_{FE},\,$  or  $I_{CBO}$  and finally summed. These changes or deltas in  $V_{BE},\,h_{FE},\,$  and  $I_{CBO}$  are calculated based on

$$R_{B1} := \frac{V_{BE}}{I_{B2}} \qquad R_{C} := \frac{V_{CC} - V_{CE}}{I_{C} + I_{B} + I_{B2}}$$

$$R_{B1} := \frac{V_{CE} - (I_{B2} \cdot R_{B2})}{I_{B} + I_{B2}}$$

$$Designer must choose I_{B2}$$

$$I_{C} := \frac{\left[\frac{-R_{C}}{h_{FE}} I_{CBO} - R_{C} \cdot I_{CBO} + \frac{R_{C}}{R_{B2}} V_{BE} - \frac{R_{C}}{(R_{B2} \cdot h_{FE})} h_{ie} \cdot I_{CBO} - \frac{R_{E}}{R_{B2}} h_{ie} \cdot I_{CBO} - \frac{R_{B1}}{R_{B2}} I_{CBO} - \frac{R_{B1}}{R_{B2}} I_{CBO} - \frac{R_{B1}}{R_{B2}} V_{BE} - \frac{R_{B1}}{(R_{B2} \cdot h_{FE})} h_{ie} \cdot I_{CBO} - h_{ie} \cdot I_{CBO} - V_{CC}\right]}{\left[R_{C} + \frac{R_{C}}{h_{FE}} + \frac{R_{C}}{(R_{B2} \cdot h_{FE})} h_{ie} + \frac{R_{B1}}{h_{FE}} + \frac{R_{B1}}{(R_{B2} \cdot h_{FE})} h_{ie} + \frac{1}{h_{FE}} h_{ie}\right]}$$

▲ Figure 6. Equations for voltage feedback with voltage source bias network.

## THE POSSIBILITIES ARE INFINITE FUITSU

#### **Major Product Lines**

#### **Microwave Devices**

For the expanding wireless market, we offer low noise driver and high power microwave communication devices.

- Devices for satellite broadcasting and communications
- Devices for mobile handsets, pagers, and base stations
- Devices for microwave and millimeter-wave terrestrial connections

#### **Lightwave Devices**

Lightwave communication offers the key to expand and exchange information in our multi-media society. Our diversified product offering of sources and detectors include many high performance devices.

- Devices for high bit rate applications
- Devices for DWDM applications
- Devices for lightwave access networks
- Devices for lightwave Analog Video and RF transmission

#### GaAs IC

The rapid advances of our "information society" have installed the need for high-speed decision and switching technology. To satisfy our customer demands, we are developing the highest speed and lowest power gallium arsenide IC products.

- Gate arrays
- Application Specific Standard Products for lightwave telecommunications
- Application Specific Standard Products for data-communications.

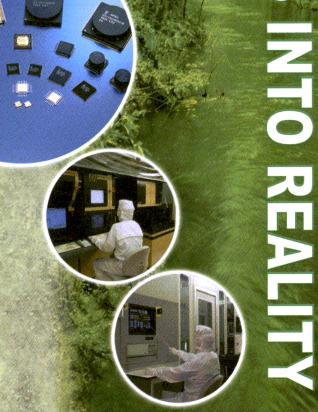
#### www.fcsi.fujitsu.com

FUJITSU COMPOUND SEMICONDUCTOR, INC. 2355 ZANKER RD., SAN JOSE, CA 95131 PH: (408) 232-9500 FAX: (408) 428-9111

For opportunities, contact us at:

jobs@fcsi.fujitsu.com

Products manufactured by Fujitsu Quantum Devices, Ltd.


#### Additional Contacts: FUJITSU MICROELECTRONICS

EUROPE
Quantum Devices Division
Network House
Norreys Drive
Maldenhead, Berkshire SL6 4FJ
United Kingdom
TEL: +44 (0) 1628 504800

FUJITSU QUANTUM DEVICES LIMITED Global Business Division Global Sales Support Department Shinjuku Dalichiselmel Building, 2-7-1 Mishishinjuku.

Shinjuku-ku, Tokyo, 163-0721, Japan TEL: +81-3-5322-3356 FAX: +81-3-5322-3398 FUJITSU QUANTUM DEVICES SINGAPORE PTE LTD.
HONG KONG BRANCH
Rm. 1101, Ocean Centre,
5 Canton Rd.
Tsim Sha Tsui, Kowloon,
Hong Kong
TEL: +852-2377-9227
FAX: +852-2377-3921

Circle 57



#### BUPOLAR BUASING

$$R_{E} = \frac{V_{CC} - V_{CE}}{I_{C}} \qquad R1 = \frac{V_{CC} - I_{B2} \cdot R_{2}}{I_{B2} + I_{B}}$$

$$Pick \ I_{B2} \text{ to be 10 percent of } I_{C}, \text{ which is equal to .0005 A}$$

$$R_{2} = \frac{V_{RB2}}{I_{B2}} \qquad V_{RB2} = V_{BE} + (I_{B} + I_{C}) \cdot R_{E}$$

$$V_{BE} - \frac{I}{h_{FE}} h_{i} \dot{e}^{i} C_{BO} h_{i} \dot{e}^{i} C_{BO} \frac{R_{E}}{h_{FE}} I_{CBO} R_{E} \cdot I_{CBO} \frac{R_{I}}{R_{2}} V_{BE} \frac{R_{I}}{R_{2} \cdot h_{FE}} h_{i} \dot{e}^{i} C_{BO} \frac{R_{I}}{R_{2}} h_{i} \dot{e}^{i} C_{BO} \frac{R_{I}}{R_{2}} R_{E} \frac{R_{I}}{R_{2}} R_{E} \frac{R_{I}}{R_{2}} h_{FE} \frac{R_{I}}{R_{2}} R_{E} \frac{R_{I$$

Figure 7. Equations for emitter feedback bias network.

variations in these parameters based on the manufacturing processes.

A comparison of each circuit's stability factors will certainly provide insight as to which circuit compensates best for each parameter. MATHCAD was again used to calculate the partial derivatives for each desired stability factor. The stability factors for bias circuit #1 are shown in Table 4. The stability factors for the remaining circuits are shown in the Appendix.

The change in collector current from the nominal design value at 25 degrees C is then

> calculated by taking each stability factor and multiplying it times the corresponding change in each parameter. Each product is then summed to determine the absolute change in collector current.

> As an example, the collector current of the HBFP-0405 will be analyzed as temperature is increased from +25 degrees C to +65 degrees C. For the HBFP-0405,  $I_{CBO}$  is typically 100 nA at +25 degrees C and typically doubles for every 10 degrees  $\mathbf{C}$ temperature rise. Therefore,  $I_{CBO}$  will increase from 100 nA to 1600 nA at +65 degrees C. The difference or  $\Delta I_{CBO}$  will be 1600 -100 = 1500 nA. The 1500 nA will then be multiplied times its corresponding  $I_{CBO}$  stability factor.

> $V_{BE}$  at 25 degrees C was measured at 0.755 volts for the HBFP-0405. Since  $V_{BE}$  has a typical negative temperature coefficient of -2 mV per degree C,  $V_{BE}$  will be 0.675 volts at +65 degrees C. The difference in  $V_{BE}$ will then be 0.675 - 0.755 = -0.08volts. The -0.08 volts will then be multiplied by its corresponding  $V_{RE}$ stability factor.

|                 |                                       |                                     |                                                               |                                                               | _                                      |
|-----------------|---------------------------------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
| Resistor        | Non-<br>Stabilized<br>Bias<br>Network | Voltage<br>Feedback<br>Bias Network | Voltage<br>Feedback<br>with Current<br>Source Bias<br>Network | Voltage<br>Feedback<br>with Voltage<br>Source Bias<br>Network | Emitter<br>Feedback<br>Bias<br>Network |
| $R_c$           | 140 Ω                                 | 138 Ω                               | 126 Ω                                                         | 126 Ω                                                         |                                        |
| $R_B$           | 30770 Ω                               | 19552 Ω                             | 11539 Ω                                                       |                                                               |                                        |
| $R_{B1}$        |                                       |                                     | 889 Ω                                                         | 2169 Ω                                                        | 2169 Ω                                 |
| R <sub>B2</sub> |                                       |                                     | 3000 Ω                                                        | 1560 Ω                                                        | 2960 Ω                                 |
| $R_E$           |                                       |                                     |                                                               |                                                               | 138 Ω                                  |

 $\triangle$  Table 1. Bias resistor values for HBFP-0405 biased at  $V_{CE}=2$  volts,  $V_{CC}=2.7$ volts,  $I_C = 5$  mA,  $h_{FE} = 80$  for the various bias networks.

| Bias Circuit                                  | Non-<br>Stabilized<br>Bias<br>Network | Voltage<br>Feedback<br>Bias Network | Voltage<br>Feedback<br>with Current<br>Source Bias<br>Network | Voltage<br>Feedback<br>with Voltage<br>Source Bias<br>Network | Emitter<br>Feedback<br>Bias<br>Network |
|-----------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
| $I_c$ (mA)@<br>minimum $h_{FE}$               | 3.14                                  | 3.63                                | 3.66                                                          | 4.53                                                          | 4.70                                   |
| $I_c$ (mA)@<br>typical $h_{FE}$               | 5.0                                   | 5.0                                 | 5.0                                                           | 5.0                                                           | 5.0                                    |
| $I_c$ (mA)@<br>maximum $h_{FE}$               | 9.27                                  | 7.09                                | 6.98                                                          | 5.44                                                          | 5.27                                   |
| Percentage change in $I_c$ from nominal $I_c$ | +85%<br>-37%                          | +42%<br>-27%                        | +40%<br>-27%                                                  | +9%<br>-9%                                                    | +5.4%<br>-6%                           |

lacktriangle Table 2. Summary of  $I_{\mathcal{C}}$  variation versus  $h_{\mathsf{FE}}$  for various bias networks for the HBFP-0405,  $V_{CC}=2.7$  volts,  $V_{CE}=2$  volts,  $I_{C}=5$  mA,  $T_{i}=+25$  degrees C.



## Xemod 3G QuikPAC™ RF amplifier stages shorten your products' time-to-market.

QuikPAC™ surface mount modules can help you shave precious weeks off your 3G amplifier development cycle.

Whether you choose a standard model, a gate-regulated model, or specify your own custom pre-set and compensated bias, QuikPACs eliminate time-consuming stage alignment steps.

They also reduce part counts, allowing you to design simpler, smaller amplifiers that are easier

and more cost-effective to manufacture. And because they're physically interchangeable, you can re-use significant portions of your designs to create entirely new products.

QuikPAC modules are available now in power levels ranging from 25 to 180 Watts. To jump start your 3G amplifier development, call Xemod or visit www.xemod.com—ASAP.



#### BIPOLAR BIASING

$$I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}}$$
  $h_{FE}, V_{BE} = {
m constant}$   $V'_{BE} = \frac{\partial I_C}{\partial V'_{BE}}$   $I_{CBO}, h_{FE} = {
m constant}$   $h_{FE} = \frac{\partial I_C}{\partial h_{FE}}$   $I_{CBO}, V_{BE} = {
m constant}$ 

First calculate the stability factors for  $V_{BE}$ ,  $I_{CBO}$  and  $h_{FE}$ . Then, to find the change in collector current at any temperature, multiply the change from 25 degrees C of each temperature dependent variable with its corresponding stability factor and sum.

$$\Delta I_{C} = SI_{CBO} \times \Delta I_{CBO} \, + \, SV_{BE} \times \Delta V_{BE} \, + \, Sh_{FE} \times \Delta h_{FE}$$

#### $\blacktriangle$ Table 3. Calculation of the stability factors and their combined effect on $I_c$ .

| Collector Current at any Temperature $(I_C)$                                                                     | $\frac{h_{FE} \cdot (V_{CC} - V'_{BE})}{(h_{ie} + R_B)} + I_{CBO} \cdot (1 + h_{FE})$ |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $I_{CBO}$ Stability Factor $I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}} ig  h_{FE}, V'_{BE} = { m constant}$ | $1+h_{FE}$                                                                            |
| $V_{BE}$ Stability Factor $V_{BE}' = rac{\partial I_C}{\partial V_{BE}'}   I_{CBO}, h_{FE} = { m constant}$     | $\frac{-h_{FE}}{h_{ie} + R_B}$                                                        |
| $h_{FE}$ Stability Factor $h_{FE}=rac{\partial I_C}{\partial h_{FE}}ig I_{CBO},V'_{BE}=	ext{constant}$          | $\frac{V_{CC} - V_{BE}'}{h_{ie} + R_B} + I_{CBO}$                                     |

▲ Table 4. Stability factors for non-stabilized bias network #1.

 $h_{FE}$  is typically 80 at +25 degrees C and typically increases at a rate of 0.5 percent per degree C. Therefore,  $h_{FE}$  will increase from 80 to 96 at +65 degrees C, making  $\Delta h_{FE}$  equal to 96 – 80 = 16. Again the  $\Delta$  is multiplied by its corresponding stability factor.

Once all stability terms are known, they can be summed to give the resultant change in collector current from the nominal value at +25 degrees C. The results of the stability analysis are shown in Table 5. The nonsta-

bilized circuit #1 allows  $I_C$  to increase about 27 percent, while circuits 2 and 3 show a 19 to 20 percent increase in  $I_C$ . Somewhat surprising is that circuit #4 shows a nearly 30 percent increase in  $I_C$ with temperature because  $V_{BE}$  is the major contributor to stability. This is probably due to the impedance of the  $R_{B1}$  and  $R_{B2}$  voltage divider working against  $V_{BE}$ . Both circuits #2 and #3 have very similar performance over temperature. Both offer a significant improvement over circuit #1 and #4. Predictably, circuit #5 offers the best performance over temperature by nature of the emitter feedback. Emitter feedback can be used effectively if the resistor can be adequately RF bypassed without producing stability problems.

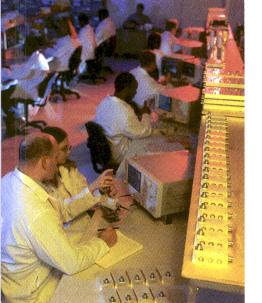
The degree of control that each bias circuit has on controlling  $I_C$  due to  $h_{FE}$  variations and the intrinsic temperature dependent parameters is defined by the design of the bias circuit. Increasing the voltage differential between  $V_{CE}$  and  $V_{CC}$  can enhance the circuit's ability to control  $I_C$ . In handset applications, this becomes difficult with 3-volt batteries as power sources. The current that is allowed to flow through the various bias resistors can also have a major effect on  $I_C$  control.

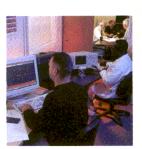
In order to analyze the various configurations, an AppCAD [5] module was generated. AppCAD consists of various modules developed to help RF designers with microstrip, stripline, detector, pin diode, MMIC biasing, RF amplifier, transistor biasing and system level calculations, as well as other design modules. The AppCAD BJT biasing module allows the designer to fine-tune each bias circuit design for optimum performance. AppCAD also allows the designer to input device varia-

tion parameters peculiar to a certain manufacturer's semiconductor process. A sample screen showing a typical bias circuit is shown in Figure 8. The data from AppCAD is used to create the graphs in the following sections.

The first exercise is to graphically illustrate the percentage

| Bias Circuit                                  | Non-<br>stabilized        | #2 Voltage<br>Feedback     | #3 Voltage<br>Feedback<br>w/Current<br>Source | #4 Voltage<br>Feedback    | #5 Emitter<br>Feedback     |
|-----------------------------------------------|---------------------------|----------------------------|-----------------------------------------------|---------------------------|----------------------------|
| $I_{CBO}$ stability factor                    | 81                        | 52.238                     | 50.865                                        | 19.929                    | 11.286                     |
| V'BE stability factor                         | $-2.56653 \times 10^{-3}$ | $-2.568011 \times 10^{-3}$ | $-3.956 \times 10^{-3}$                       | -0.015                    | $-6.224378 \times 10^{-3}$ |
| <i>h<sub>FE</sub></i> stability factor        | $6.249877 \times 10^{-5}$ | $4.031 \times 10^{-5}$     | $3.924702 \times 10^{-5}$                     | $1.537669 \times 10^{-5}$ | $8.707988 \times 10^{-6}$  |
| $\Delta I_C$ due to $I_{CBO}$ (mA)            | 0.120                     | 0.078                      | 0.076                                         | 0.030                     | 0.017                      |
| $\Delta I_C$ due to $V'_{BE}$ (mA)            | 0.210                     | 0.205                      | 0.316                                         | 1.200                     | 0.497                      |
| $\Delta I_C$ due to $h_{FE}$ (mA)             | 0.999                     | 0.645                      | 0.628                                         | 0.246                     | 0.140                      |
| Total $I_C(mA)$                               | 1.329                     | 0.928                      | 1.020                                         | 1.476                     | 0.654                      |
| Percentage change in $I_C$ from nominal $I_C$ | 26.6%                     | 18.6%                      | 20.4%                                         | 29.5%                     | 13.1%                      |


▲ Table 5. Bias stability analysis at +65 degrees C using the HBFP-0405, where  $V_{cc} = 2.7$  volts,  $V_{CE} = 2$  volts and  $I_c = 5$  mA.




With over 35 years experience
designing and manufacturing
microwave components, Lorch
Microwave provides filtering
solutions to the commercial market

- from base station to microwave radio links
- m from less than 1MHz to 40GHz
- from high volume to small custom runs

Diverse engineering and manufacturing capabilities allow Lorch Microwave to quickly respond to customer needs and provide custom tailored solutions, all with trademark service and satisfaction.



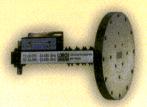




1725 North Salisbury Blvd. · PO Box 2828 Salisbury, Maryland 21802

Tel: 800.780.2169 · Fax: 410.860.1949

E-mail: lorchsales@lorch.com Web: http://www.lorch.com


#### Circle 17

Commercial, High Performance & Custom-Designed Products



#### WIRELESS FILTERS AND DUPLEXERS

- cellular and PCS base stations filters, duplexers and assemblies
- delay assemblies for feed forward amplifier applications



#### **WAVEGUIDE DIPLEXERS**

- point-to-point microwave radio links to 40 GHz
- terrestrial communication networks



#### CERAMIC FILTERS

- filters and diplexers to 5.8 GHz
- specialized cellular and PCS applications
- diplexers and finite pole placed topologies available

#### OTHER COMMERCIAL AND MILITARY APPLICATIONS

- cavity filters
- discrete filters
- tunable filters
- other signal processing products

#### BIPOLAR BIASING

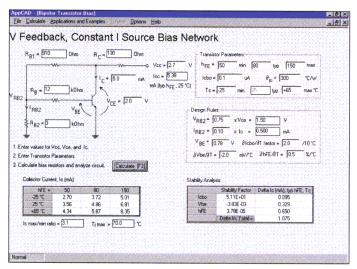
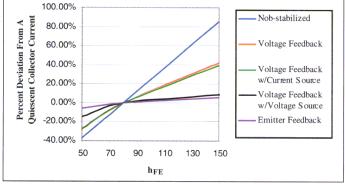



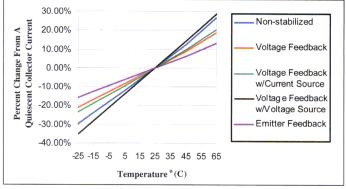

Figure 8. Agilent Technologies AppCAD module for BJT biasing.

change in  $I_C$  versus  $h_{FE}$ . AppCAD is used to calculate the resistor values for each of the five bias networks. The HBFP-0405 transistor is biased at a  $V_{CE}$  of 2 volts,  $I_C$  of 5 mA, and  $V_{CC}$  of 2.7 volts. Various values of  $h_{FE}$  are substituted into AppCAD; results are presented in Figure 9. The data clearly shows that the emitter feedback and voltage feedback with voltage source networks are superior to the remaining circuits with regards to controlling  $h_{FE}$  at room temperature. These networks provide a 4:1 improvement over the other two voltage feedback networks.

AppCAD is then used to simulate a temperature change from  $T_j=-25$  de-grees C to +65 de-grees C with  ${\bf h}_{FE}$  held constant. Whereas the original Matchcad analysis assumed that  $T_c=T_j$ , AppCAD takes into account that  $T_j$  is greater than  $T_c$ . AppCAD calculates the thermal rise based on DC power dissipated and the thermal impedance of the device. The results of the analysis are shown in Figure 10. The voltage feedback with voltage source network performed nearly as poorly as the non-stabilized circuit. This is due to the tempera-

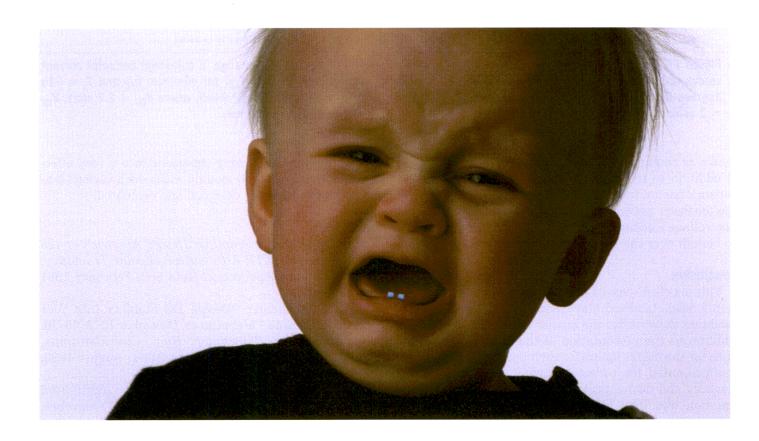


▲ Figure 9. Percent change in quiescent collector current versus  $h_{FE}$  for the HBFP-0405 where  $V_{CC} = 2.7$  volts,  $V_{CE} = 2$  volts,  $I_C = 5$  mA and  $T_i = +25$  degrees C.


ture induced  $V_{BE}$  decrease and the bias circuit trying to keep  $V_{BE}$  constant. Power bipolar designers will often utilize a silicon diode in place of  $R_{B2}$  so that the bias voltage will track the  $V_{BE}$  of the transistor. Depending on the impedance of the voltage divider network,  $V_{BE}$  could rise, causing  $I_C$  to increase. The emitter feedback network performed very well as expected. The simple voltage feedback network appeared to be optimum when considering the simplicity of the circuit.

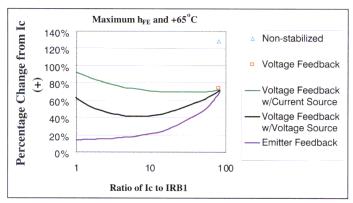
Bias networks 3 through 5 make use of an additional resistor that shunts some of the total power supply current to ground. Properly chosen, this additional bias current can be used to assist in controlling  $I_C$  over temperature and  $h_{FE}$  variations from device to device. AppCAD is set up such that the designer has various choices regarding the amount of bias resistor current that is allowed to flow from the power supply. AppCAD is used to analyze each bias circuit.

The graphs in Figures 11 and 12 plot the percentage change in  $I_C$  versus the ratio of  $I_C$  to  $I_{RB1}$ .  $I_{RB1}$  is the current flowing through resistor  $R_{B1}$ , which is the summation of base current  $I_B$  and current flowing through resistor  $R_{B2}$ . The maximum permissible ratio of  $I_C$  to  $I_{RB1}$  is limited by the  $h_{FE}$  of the transistor. Figure 11 represents the worst case condition, where  $I_C$  increases at maximum  $h_{FE}$  and highest temperature. Figure 12 shows the opposite scenario, in which the lowest  $I_C$  results from lowest  $h_{FE}$  and lowest temperature. The percentage change is certainly more pronounced at high  $h_{FE}$  and high temperature.


Although some of the predicted results are somewhat surprising, the bias network with emitter resistor feedback, as expected, offers the best performance overall. For a ratio of  $I_C$  to  $I_{RB1}$  of 10 to 1 or less, the resultant change in collector current is less than 20 percent. The voltage feedback with voltage source network performs best with an  $I_C$  to  $I_{RB1}$  ratio between 6 and 10 with a worst case change of 41 percent in collector current.

To complete the comparison, two additional points representing the nonstabilized and the voltage feedback networks have been added to the graphs. They are




▲ Figure 10. Percent change in quiescent collector current versus temperature for the HBFP-0405 where  $V_{CC}=2.7$  volts,  $V_{CE}=2$  volts,  $I_{C}=5$  mA and  $T_{I}=+25$  degrees C.

## Next to Teradyne, other Bluetooth™ test companies are still teething.

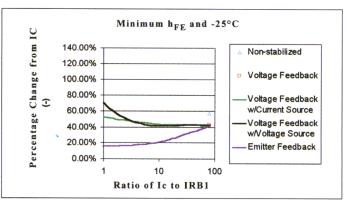


While other semiconductor wireless test solutions are still in their infancy, Teradyne's Catalyst system is already out there working for a living. In fact, a majority of the world's Bluetooth devices are tested on Catalyst. And it looks like we've got more design-ins than all others combined. But then, Catalyst does all the tests, not just some. And it tests faster. We're # 1 baby, and that's the true-blue truth. To learn more contact Harding.Ounanian@teradyne.com or call 617 422 2125 right now.

#### BIPOLAR BIASING



▲ Figure 11. Percent change in quiescent collector current versus ratio of  $I_C$  to  $I_{RB1}$  for maximum  $h_{FE}$  and  $T_j = +65$  degrees C for the HBFP-0405, where  $V_C = 2.7$  volts,  $V_{CE} = 2$  volts and  $I_C = 5$  mA.


shown as single points because only the base current is in addition to the collector current. The nonstabilized network has an increase of 129 percent, while the voltage feedback network has an increase of 74.5 percent. The voltage feedback with current source network offers no benefit over the simpler voltage feedback network.

#### Conclusion

This article discussed the circuit analysis of four commonly used stabilized bias networks and one nonstabilized bias network for the bipolar junction transistor. In addition to the presentation of the basic design equations for the bias resistors for each network, an equation was presented for collector current in terms of bias resistors and device parameters. The collector current equation was then differentiated with respect to the three primary temperature dependent variables resulting in three stability factors for each network. These stability factors plus the basic collector current equation give the designer insight as to how best bias transistors for best performance over hFE and temperature variations. The basic equations were then integrated into an AppCAD module, providing the circuit designer with an easy and effective way to analyze bias networks for bipolar transistors.

#### Acknowledgement

The authors would like to thank Bob Myers at Agilent Technologies in Newark, CA, for his fine work in con-



▲ Figure 12. Percent change in quiescent collector current versus ratio of  $I_C$  to  $I_{RB1}$  for minimum  $h_{FE}$  and  $T_j = -25$  degrees C for the HBFP-0405, where  $V_{CC} = 2.7$  volts,  $V_{CE} = 2$  volts and  $I_C = 5$  mA.

verting the bipolar biasing equations into a very effective and useful AppCAD module with which various bias networks can be easily designed and evaluated.

#### References

- 1. A Cost-Effective Amplifier Design Approach at 425 MHz Using the HXTR-3101 Silicon Bipolar Transistor, Hewlett-Packard Application Note 980, February 1981 (out of print).
- 2. Kenneth Richter, "Design DC Stability Into Your Transistor Circuits," *Microwaves*, December 1973: 40–46.
- 3. Microwave Transistor Bias Considerations, Hewlett-Packard Application Note 944-1, August 1980, (out of print).
- 4. 1800 to 1900 MHz Amplifier using the HBFP-0405 and HBFP-0420 Low Noise Silicon Bipolar Transistors, Hewlett-Packard Application Note 1160, November 1998, publication number 5968-2387E.
- 5. AppCAD is available from Agilent Technologies through the company's Web site, www.semiconductor. agilent.com.

#### Author information

Al Ward is an applications engineer with Agilent Technologies Wireless Semiconductor Division, 1410 E. Renner Road, Suite 100, Richardson, TX, 75082. He may be reached at 972-699-4369, or via e-mail at al\_ward@agilent.com. Bryan Ward was a summer "SEED" student with Agilent Technologies.

# With EiC

| P/N    | Gain | Output<br>P1dB | Output<br>IP3 | Vd<br>(V) | (MA) | BW            |
|--------|------|----------------|---------------|-----------|------|---------------|
| ECG013 | 12   | 25             | 45            | 5         | 300  | 250-2500 MHz  |
| ECG014 | 20.5 | 24             | 42            | 5         | 115  | 50-2000 MHz   |
| ECG015 | 15   | 24             | 41            | 5         | 110  | 1800-2500 MHz |

Cool Products.

Cool Answers. Cool Running.

Our new InGaP HBT broadband amplifiers have set the industry standard for superior technology in affordable packages

EiC delivers the high linearity, high reliability and low cost plastic packages you need for today's high performance wireless applications.

#### EiC's leading edge specifications provide:

Advanced Indium Gallium Phosphide Hetero-junction Bipolar Transistor (InGaP HBT) Technology

WHigh Output OIP3 WHigh MTTF Value

Low Thermal Resistance Minimal Variation Over Temperature

Since 1997, EiC has specialized in high frequency circuits for use in a wide range of applications, including wireless, handset, base stations, WLL, CATV and satellite communications in the RF and microwave frequency range.

Call now for more information and pricing on our revolutionary new InGap HBT Gain Blocks, power amplifier modules for GSM and CDMA applications.

EiC - Leading Through Responsiveness

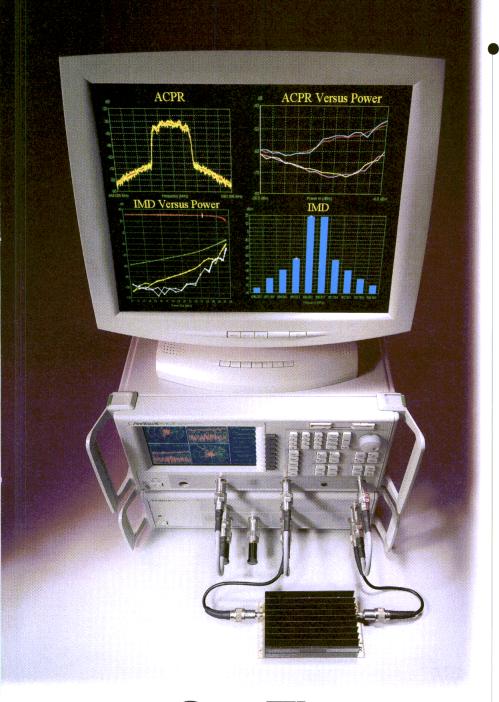
Visit us on the web at: www.eiccorp.com Call today and learn about our accelerated life test data. 510-979-8999 or call your local Avnet Distributor

Circle 31

#### EiC Corp.

Excellence in Communications

45738 Northport Loop West Fremont, CA 94538, USA Tel: 510.979.8999 Fax: 510.979.8902 E-mail: sales@eiccorp.com


#### **Appendix**

| Collector Current at any Temperature $(I_C)$                                                                       | $\frac{h_{FE} \cdot (V_{CC} - V_{BE}') + I_{CBO} \cdot (1 + h_{FE}) \cdot A}{h_{ie} + R_B + R_C \cdot (1 + h_{FE})}$                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{CBO}$ Stability Factor $I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}} \big  h_{FE}, V'_{BE} = { m constant}$ | $\frac{(1+h_{FE})\cdot A}{h_{ie}+R_B+R_C\cdot (1+h_{FE})}$                                                                                                                                                                                          |
| $V_{BE}$ Stability Factor $V'_{BE} = \frac{\partial I_C}{\partial V'_{BE}} \big  I_{CBO}, h_{FE} = { m constant}$  | $\frac{-h_{FE}}{h_{ie} + R_B + R_C \cdot (1 + h_{FE})}$                                                                                                                                                                                             |
| $h_{FE}$ Stability Factor $h_{FE} = \frac{\partial I_C}{\partial h_{FE}}   I_{CBO}, V'_{BE} = { m constant}$       | $\frac{V_{CC} - V_{BE}' + A \cdot I_{CBO}}{h_{FE} \cdot R_C + R_B + h_{ie} + R_C} - \frac{R_C \cdot h_{FE} \cdot (V_{CC} - V_{BE}' + A \cdot I_{CBO}) + A \cdot I_{CBO}}{(h_{FE} \cdot R_C + R_B + h_{ie} + R_C)^2}$ where $A = h_{ie} + R_B + R_C$ |

#### ▲ Stability factors for voltage feedback bias network #2.

| Collector Current at any Temperature $(I_C)$                                                                       | $h_{FE} \left[ \frac{-V'_{BE} \cdot A - R_{B2} \cdot \left[ R_C \cdot I_{CBO} \cdot \left( 1 + h_{FE} \right) - V_{CC} \right]}{\left( R_B + h_{ie} \right) \cdot A + R_{B2} \cdot \left( h_{FE} \cdot R_C + R_C + R_{B1} \right)} \right] + I_{CBO} (1 + h_{FE})$                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{CBO}$ Stability Factor $I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}} \big  h_{FE}, V'_{BE} = { m constant}$ | $(1 + h_{FE}) - \frac{R_{B2} \cdot h_{FE} \cdot R_C \cdot (1 + h_{FE})}{A \cdot (R_B + h_{ie}) + R_{B2} \cdot (h_{FE} \cdot R_C + R_C + R_{B1})}$                                                                                                                                                                                                                                                                                                |
| $V_{BE}$ Stability Factor $V'_{BE} = \frac{\partial I_C}{\partial V'_{BE}} \big  I_{CBO}, h_{FE} = { m constant}$  | $\frac{-h_{FE} \cdot A}{(R_B + h_{ie}) \cdot A + R_{B2} \cdot (h_{FE} \cdot R_C + R_C + R_{B1})}$                                                                                                                                                                                                                                                                                                                                                |
| $\mathbf{h}_{FE}$ Stability Factor                                                                                 | $\frac{h_{FE} \cdot \{R_{B2} \cdot R_C \cdot [(-R_{B2} \cdot V_{CC} + B) + R_{B2} \cdot R_C \cdot I_{CBO} \cdot (1 + h_{FE})]\}}{D^2} -$                                                                                                                                                                                                                                                                                                         |
| $h_{FE}=rac{\partial I_C}{\partial h_{FE}} I_{CBO},V^{_{}} _{BE}={ m constant}$                                   | $\begin{split} \left[ \frac{B + R_{B2} \cdot \left[ R_C \cdot I_{CBO} \cdot (1 + h_{FE}) - V_{CC} + h_{FE} \cdot R_C \cdot I_{CBO} \right]}{D} \right] + I_{CBO} \\ \text{where} \qquad & A = R_{B1} + R_{B2} + R_C \\ & B = V_{BE} \cdot (R_{B1} + R_{B2} + R_C) \\ & C = (R_B + h_{ie}) \cdot (R_{B1} + R_{B2} + R_C) \\ & D = (R_B + h_{ie}) \cdot (R_{B1} + R_{B2} + R_C) \\ & + R_{B2} \cdot (h_{FE} \cdot R_C + R_C + R_{B1}) \end{split}$ |

lacktriangle Stability factors for voltage feedback with current source bias network #3.



### See The True Performance Of Your Power Amplifier.



#### Scorpion ... You Only Need One!

Anritsu is proud to introduce PATS, an amazing turnkey RF Power Amplifier test like no other on the market. Built upon the Scorpion Vector Network Measurement System (VNMS), PATS tames your toughest measurement requirements with blazing speed, unparalleled dynamic range and ultimate accuracy.

With a single connection, see your Power Amplifier's:

- ACPR
- IMD & PAE
- Compression
- Harmonics
- S-Parameters

The ME7840A is a complete system that includes the following:

| ME7840A                   | Power Amplifier<br>Test System (PATS)        |
|---------------------------|----------------------------------------------|
| Scorpion<br>PA Navigator™ | Easy-to-Use<br>Easy-to-Customize<br>Software |
| Scorpion                  | Fast Measurements & Ultimate Accuracy        |
| PATS Test Set             | Single Connection<br>Flexible Configuration  |

Whether you're involved with R&D or manufacturing, you only need one PATS to increase your throughput. For a demo, call Anritsu at 1-800-ANRITSU or check out our website. Then, you too, can see your Power Amplifier's true performance. www.us.anritsu.com/adsmailers/pats.asp



**ME7840A Power Amplifier Test System (PATS)** 

© 2001 Anritsu Company Sales Offices: United States and Canada, I-800-ANRITSU, Europe 44(01582)433200, Japan 8I(03)3446-IIII, Asia-Pacific 65-2822400, South America 55(21)527-6922, http://www.anritsu.com



#### 0.8 to 6.7GHz \$5.95 (10-49)

#### ·low conversion loss ·thin profile ·superb temperature stability ·low cost

Unleash extra performance from your higher frequency designs by upgrading now to Mini-Circuits level 0 to level 17 (LO) Blue Cell™ mixers. State-of-the-art automated manufacturing using multilayer thick film ceramic construction delivers superb temperature stability, low conversion loss, high repeatability, and very low cost per unit. This process also results in a phenomenally thin package standing only 0.070" high! Scoop the competition and upgrade to the next level of performance in your higher frequency products...contact Mini-Circuits for Blue Cell<sup>TM</sup> mixers today.

Mini-Circuits...we're redefining what VALUE is all about!

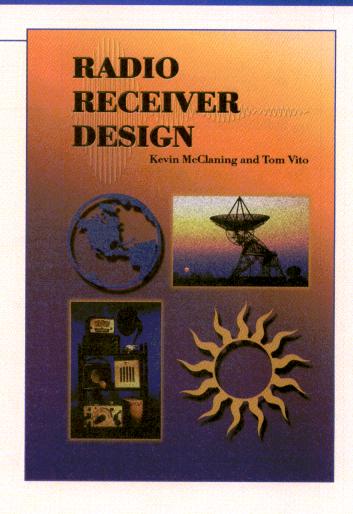
| Model                                 | Level                | Freq.                                    | Price                        | Model                                       | Level                    | Freq.                                    | Price                        |
|---------------------------------------|----------------------|------------------------------------------|------------------------------|---------------------------------------------|--------------------------|------------------------------------------|------------------------------|
| No.                                   | (LO)                 | (GHz)                                    | \$ea.                        | No.                                         | (LO)                     | (GHz)                                    | \$ea.                        |
| MBA-10VL                              | 0                    | 0.8-1.0                                  | 5.95                         | MBA-15LH                                    | +10                      | 1.2-2.4                                  | 6.95                         |
| MBA-10L                               | +3                   | 0.8-1.0                                  | 6.95                         | MBA-18LH                                    | +10                      | 1.6-3.2                                  | 6.95                         |
| MBA-15L                               | +4                   | 1.2-2.4                                  | 6.95                         | MBA-25LH                                    | +10                      | 2.2-3.6                                  | 6.95                         |
| MBA-18L                               | +4                   | 1.6-3.2                                  | 6.95                         | MBA-35LH                                    | +10                      | 3.0-4.0                                  | 6.95                         |
| MBA-25L<br>MBA-35L<br>MBA-9<br>MBA-12 | +4<br>+4<br>+7<br>+7 | 2.0-3.0<br>3.0-4.0<br>0.8-1.0<br>0.8-2.5 | 6.95<br>6.95<br>5.95<br>5.95 | MBA-9MH<br>MBA-12MH<br>MBA-15MH<br>MBA-18MH | +13<br>+13<br>+13        | 0.8-1.0<br>0.8-2.5<br>1.4-2.4<br>1.6-3.2 | 7.95<br>7.95<br>7.95<br>7.95 |
| MBA-26<br>MBA-591<br>MBA-671          | +7<br>+7<br>+7       | 2.2-2.7<br>2.8-5.9<br>2.4-6.7            | 5.95<br>6.95<br>8.95         | MBA-25MH<br>MBA-35MH<br>MBA-9H<br>MBA-12H   | +13<br>+13<br>+17<br>+17 | 2.0-3.0<br>3.0-4.0<br>0.8-1.0<br>0.8-2.5 | 7.95<br>7.95<br>9.95<br>9.95 |





Protected by U.S. patents 5,534,830 5,640,132 5,640,134 5,640,699




P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For quick access to product information see MINI-CIRCUITS CATALOG & WEB SITE The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: http://www.minicircuits.com

#### RADIO RECEIVER DESIGN

## ...the New Definitive Resource For Key Concepts in Receiver Design order today—www.noblepub.com

## Radio Receiver Design Kevin McClaning and Tom Vito

- Provides excellent introductions and technical background on basic as well as advanced component characteristics, featuring "war stories," exercises, design examples and an abundance of useful drawings and tables
- Covers in detail all major components related to receiver design, including cascade interaction
- Serves as a reference tool for students and professionals of electrical engineering, RF and microwave electronics and radio receiver design
- ◆ Emphasizes practical and proven concepts that help clarify the role of each component within the design





**Noble Publishing Corporation** 

630 Pinnacle Court Norcross, GA 30071 Tel: 770-449-6774 Fax: 770-448-2839

www.noblepub.com

European Customers: Please order through American Technical Publishers

Tel: +44 (0) 1462 437933 Fax: +44 (0) 1462 433678 www.ameritech.co.uk

> Dealer inquiries invited. Price does not include shipping.

#### BIPOLAR BIASING

| Collector Current at any Temperature $(I_C)$                                                                       | $\frac{I_{CBO} \cdot (-A) + I_{CBO} \cdot h_{ie} \cdot (-B) + D - V_{CC}}{C}$                                                                                                |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $I_{CBO}$ Stability Factor $I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}} \big  h_{FE}, V'_{BE} = { m constant}$ | $\frac{h_{ie} \cdot B + A}{C}$                                                                                                                                               |
| $V_{BE}$ Stability Factor $V'_{BE} = \frac{\partial I_C}{\partial V'_{BE}}   I_{CBO}, h_{FE} = { m constant}$      | $\frac{\frac{-R_C}{R_{B2}} - \frac{R_{B1}}{R_{B2}} - 1}{C}$                                                                                                                  |
| ${ m h}_{FE}$ Stability Factor $h_{FE}=rac{\partial I_C}{\partial h_{FE}}ig I_{CBO},V'_{BE}={ m constant}$        | $\frac{I_{CBO} \cdot \left[ \frac{-R_C}{h_{FE}^2} - \frac{R_{B1}}{h_{FE}^2} \right] + I_{CBO} \cdot h_{ie} \cdot E}{C}$                                                      |
|                                                                                                                    | $\frac{I_{CBO} \cdot A + I_{CBO} \cdot h_{ie} \cdot B - D + V_{CC}}{C^2} \cdot \left[ \frac{-R_C}{h_{FE}^2} - \frac{R_{B1}}{h_{FE}^2} + h_{ie} \cdot E \right]$              |
|                                                                                                                    | where:                                                                                                                                                                       |
|                                                                                                                    | $A = \frac{R_C}{h_{FE}} + R_C + \frac{R_{B1}}{h_{FE}} + R_{B1}$                                                                                                              |
|                                                                                                                    | $B = \frac{R_C}{R_{B2} \cdot h_{FE}} + \frac{R_C}{R_{B2}} + \frac{R_{B1}}{R_{B2} \cdot h_{FE}} + \frac{R_{B1}}{R_{B2}} + \frac{1}{h_{FE}} + 1$                               |
|                                                                                                                    | $C = R_C + \frac{R_C}{h_{FE}} + \frac{R_{B1}}{h_{FE}} + h_{ie} \cdot \left[ \frac{R_C}{R_{B2} \cdot h_{FE}} + \frac{R_{B1}}{R_{B2} \cdot h_{FE}} + \frac{1}{h_{FE}} \right]$ |
|                                                                                                                    | $D = \frac{R_C}{R_{B2}} \cdot V'_{BE} + \frac{R_{B1}}{R_{B2}} \cdot V'_{BE} + V'_{BE}$                                                                                       |
|                                                                                                                    | $E = \frac{-R_C}{R_{B2} \cdot h_{FE}^2} - \frac{R_{B1}}{R_{B2} \cdot h_{FE}^2} - \frac{1}{h_{FE}^2}$                                                                         |

▲ Stability factors for voltage feedback with voltage source bias network #4.



® WORK

للا

 $\alpha$ 

H M

00

M/A-(

Our guts, your glory

MYCOM

#### **Extreme Challenges**

Maximize standby/talk time

Reduce handset size

Reduce costs

Visit our Web site at www.macom.com

See M/A-COM Converters and Power Amplifiers at the IEEE MTT-S Exhibition May 22-24, 2001, in Phoenix, AZ Booth #1223

tyco | Electronics

#### **Extreme Solutions**

Advanced E/D MESFET process = breakthrough linearity/gain efficiency

Next-generation ultra-miniature FQFP-N packaging = minimum board space

Highly integrated designs = better performance and reduced component count

In wireless design, you face some extreme challenges. Our solutions meet those challenges.

For example, consider M/A-COM's newest E/D MESFET-based GaAs converter chips. No other converters yield better performance using less board real estate. That means better linearity per milliwatt of total DC power dissipation. But don't stop there. We also offer stand-alone switches, mixers, VCOs, LNAs and power amplifiers and the most extreme high-performance integrated solutions to meet your most extreme challenges.

Go ahead. Turn our guts into your glory.

Circle 43

#### BIPOLAR BIASING

| Collector Current at any                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature $(I_C)$                                                                                                       | $\frac{h_{ie} \cdot I_{CBO} \cdot (-A) + I_{CBO} \cdot (-B) + D}{C}$                                                                                                                                                                                                                                                                             |
| $I_{CBO}$ Stability Factor $I_{CBO} = \frac{\partial I_C}{\partial I_{CBO}} \big  h_{FE}, V'_{BE} = { m constant}$        | $\frac{h_{ie} \cdot A + B}{C}$                                                                                                                                                                                                                                                                                                                   |
| $V_{BE}$ Stability Factor $V'_{BE} = rac{\partial I_C}{\partial V'_{BE}} ig  I_{CBO}, h_{FE} = { m constant}$            | $\frac{-1 - \frac{R_1}{R_2}}{C}$                                                                                                                                                                                                                                                                                                                 |
| $\mathbf{h}_{FE}$ Stability Factor $h_{FE} = \frac{\partial I_C}{\partial h_{FE}}   I_{CBO}, V'_{BE} = \mathrm{constant}$ | $ \begin{array}{c} I_{CBO} \cdot E + h_{ie} \cdot I_{CBO} \cdot \left[ \frac{-1}{{h_{FE}}^2} - \frac{R_1}{R_2 \cdot {h_{FE}}^2} \right] \\ \hline C \\ \frac{I_{CBO} \cdot B + h_{ie} \cdot I_{CBO} \cdot A - D}{C^2} \cdot \left[ h_{ie} \cdot \left( \frac{-1}{{h_{FE}}^2} - \frac{R_1}{R_2 \cdot {h_{FE}}^2} \right) + E \right] \end{array}$ |
|                                                                                                                           | where $A = \frac{R_1}{R_2 \cdot h_{FE}} + \frac{R_1}{R_2} + \frac{1}{h_{FE}} + 1$                                                                                                                                                                                                                                                                |
|                                                                                                                           | $B = \frac{R_1}{R_2} \cdot \frac{R_E}{h_{FE}} + \frac{R_1}{R_2} \cdot R_E + \frac{R_E}{h_{FE}} + R_E + \frac{R_1}{h_{FE}} + R_1$                                                                                                                                                                                                                 |
|                                                                                                                           | $C = h_{ie} \cdot \left(\frac{1}{h_{FE}} + \frac{R_1}{R_2 \cdot h_{FE}}\right) + \frac{R_E}{h_{FE}} + R_E + \frac{R_1}{R_2} \cdot \frac{R_E}{h_{FE}} + \frac{R_1}{R_2} \cdot R_E + \frac{R_1}{h_{FE}}$ $D = V'_{BE} + \frac{R_1}{R_2} \cdot V'_{BE} - V_{CC}$                                                                                    |
|                                                                                                                           | $E = \frac{-R_E}{h_{FE}^2} - \frac{R_1}{R_2} \cdot \frac{R_E}{h_{FE}^2} - \frac{R_1}{h_{FE}^2}$                                                                                                                                                                                                                                                  |

▲ Stability factors for emitter feedback bias network #5.

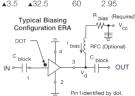


Mini-Circuits ushers in the next generation of high reliability ERA MMIC amplifiers. Just check the specs! With an expanded selection of models and gains, these HBT amplifiers cover extensive commercial and military applications to 8GHz and beyond. Instant access to S-parameter data, grounding and biasing techniques on our web site makes ERA amplifiers very easy to use. Simply sketch an interconnect layout, and the design is done. And ERA's are engineered with broader bandwidths to eliminate your need for costly compensation networks and extra gain stages. So, review your present design and replace with Mini-Circuits new ERA technology. Lower overall cost,

Mini-Circuits...we're redefining what VALUE is all about!

high reliability, and lots to...gain!




| Model    | * Freq.<br>(MHz) | Gain<br>(dB) | Max. Power Out<br>(dBm,<br>@1dB Comp.) | Dynam<br>NF(dB) | nic Range<br>IP3(dBm) | @Device<br>Current<br>(mA) | ① Price<br>\$ea.<br>(30 Qty.) |
|----------|------------------|--------------|----------------------------------------|-----------------|-----------------------|----------------------------|-------------------------------|
| ERA-1SM  | DC-8000          | 11.8         | 12.0                                   | 4.3             | 26.0                  | 40                         | 1.42                          |
| ERA-21SM | DC-8000          | 13.2         | 12.6                                   | 4.7             | 26.0                  | 40                         | 1.57                          |
| ERA-2SM  | DC-6000          | 15.2         | 13.0                                   | 4.0             | 26.0                  | 40                         | 1.57                          |
| ERA-33SM | DC-3000          | 17.4         | 13.5                                   | 3.9             | 28.5                  | 40                         | 1.72                          |
| ERA-3SM  | DC-3000          | 18.7         | 12.5                                   | 3.5             | 25.0                  | 35                         | 1.72                          |
| ERA-6SM  | DC-4000          | 12.2         | ▲17.9                                  | ▲4.5            | ▲36.0                 | 70                         | 3.90                          |
| ERA-4SM  | DC-4000          | 13.4         | ▲17.3                                  | ▲4.2            | ▲34.0                 | 65                         | 3.90                          |
| ERA-51SM | DC-4000          | 16.1         | ▲18.1                                  | ▲4.1            | ▲33.0                 | 65                         | 3.90                          |
| ERA-5SM  | DC-4000          | 18.5         | ▲18.4                                  | ▲4.3            | ▲32.5                 | 65                         | 3.90                          |
| ERA-50SM | DC-1500          | •18.3        | ▲17.2                                  | ▲3.5            | ▲32.5                 | 60                         | 2.95                          |

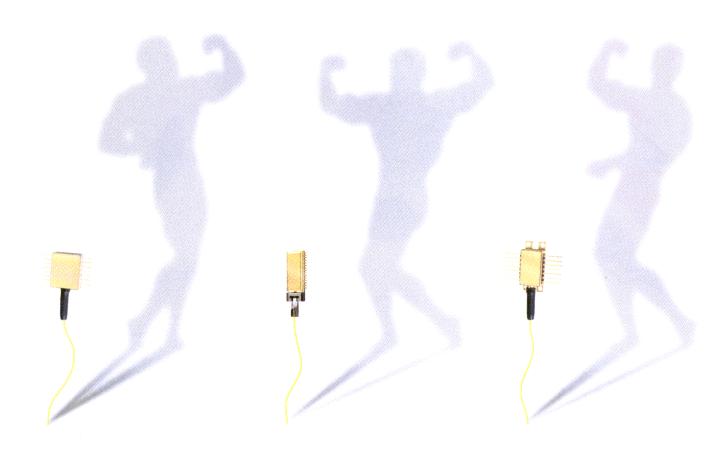
Notes:

Specs are Typ. at 2GHz, 25°C except a indicates at 1GHz and at 1.5GHz.
Chow freq. cutoff determined by external coupling capacitors

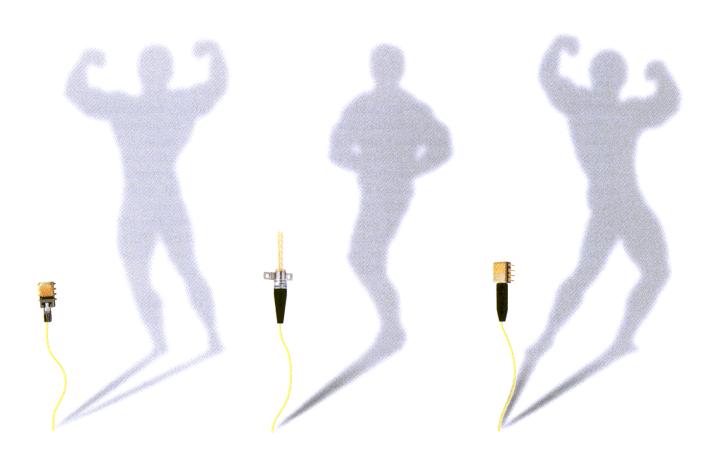
\*Low freq. cutoff determined by external coupling capacitors.

• Price (ea.) Qty.1000: ERA-1SM \$1.19, -2SM or -21SM \$1.33, -3SM or -33SM \$1.48, -4SM, -5SM,-6SM or -51SM \$2.95, -50SM \$2.00.








CIRCLE READER SERVICE CARD









#### Beef up your network.

Short and Long Haul DWDM Lasers. FP Lasers. Telemetry Lasers.

Avalanche Photodiodes. PIN Photodiodes. Surface Mount OE Modules. AWG Devices.

NEC fiber optic components are now available in North America from California Eastern Laboratories.

www.cel.com

## Connector and Termination Construction above 50 GHz

A summary of the design challenges presented by mm-wave interconnects

#### By Bill Oldfield

Anritsu

his paper discusses the design and construction of connections operating above 50 GHz. Available connectors and their design principles will be discussed, as well as the pros and cons of various backside interfaces. Details of orthogonal connections that work to at least 90 GHz and terminations in coax, microstrip and CPW, operating to at least 110 GHz will be shown and their data presented. Broadband interconnects will also be examined to meet the demanding requirements of 40-gigabit optical systems.

#### Purpose of an ideal connector

The ideal connector is a lossless, reflectionless port into a circuit. The front side allows connection to another connector or a test instrument. The backside connects to the circuit. Backside design is the most critical feature of connector use and the one over which the user has the most control.

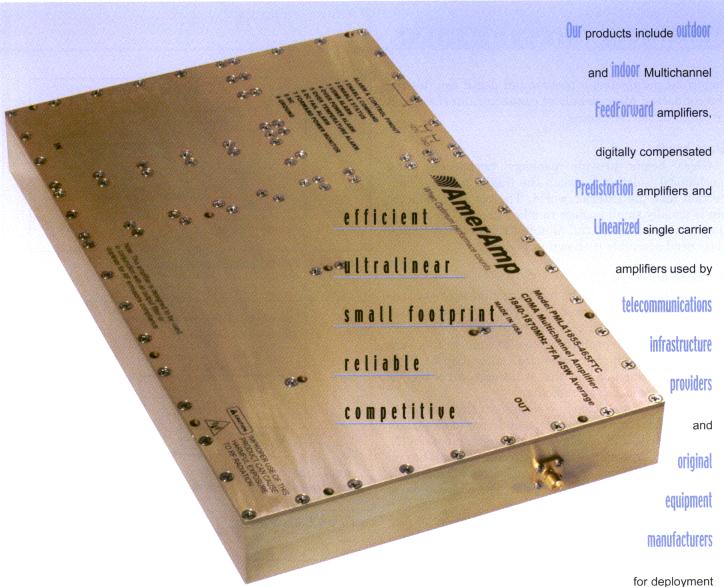
An important feature of connectors is that they must get smaller as frequency gets higher, i.e., if the frequency is doubled, the connector size must be cut in half. Mechanical tolerances must also decrease by half. Only the microwave portions of the connector must diminish with increasing frequency, the outside and connection parts can remain large.

Desired features of a practical connector:

- Low total cost.
- Sum of the material cost plus the assembly cost.
- Coverage of the desired frequency band
- In general, the higher the frequency, the smaller and more expensive the connector parts and assembly labor.

- Low loss, including structure loss and reflection loss. At high frequencies, reflection loss can be the greater value. A 10 dB return loss equals a 0.5 dB insertion loss.
- Meets environmental requirements.
- Hermiticity, thermal expansion, outgassing and voltage breakdown.
- Available standards. The SMA connector has no available standards. This is not problematic at low frequencies, but can cause problems at higher frequencies.

Table 1 lists the available connector types that work above 40 GHz and are supported by standards. Other types of connectors, such as GPO, are not supported by standards.


The upper frequency limit is defined as the frequency at which another propagation mode is possible in the coax case the  $TE_{11}$  mode. This usually occurs first in the support bead.

#### Front side interface [1]

The front side interface defines the connector. It is of little concern to the user except in regard to frequency range and compatibility of connection devices. The pin depth of the center conductor relative to the outer conductor is an

| Connector type (outer conductor size) | Upper frequency limit | Center<br>conductor<br>size |
|---------------------------------------|-----------------------|-----------------------------|
| 2.4 mm                                | 50 GHz                | 1.042 mm<br>(0.041)         |
| 1.85 mm<br>V connector                | 67 GHz                | 0.803 mm<br>(0.0316)        |
| 1 mm<br>W1 connector                  | 110 GHz               | 0.434 mm<br>(0.017)         |

▲ Table 1. High frequency connector sizes.



1.84 to 1.87 GHz

## 45W Average Four Carriers

from \$2,600.00(1000-2500 qty)

Introducing the PMLA1855-465FTC, a multicarrier amplifier designed for the cost conscious operator. Capable of a four carrier 45W average output at 27V and 12.8A for an amazing 13% efficiency. This performance allows the amplifier to be used in tower-mounted applications as well as regular BTS and repeaters. Using state-of-the-art LDMOS devices, the amplifier delivers unequaled performance and all of this within a footprint of only 300 by 185 mm (11.85 by 7.25").

Call today to arrange for a visit from one of our sales representatives to give you a live demonstration of this or any other amplifier you might be interested in. You can also visit

www.AmerAmp.com

REF 30.0 d8m AT 10 d8

SMPL
LOG
10
d8/
OFFST
44.2
3PAN
30.00 MMx

AUG
100
MA 56
C CORR

CENTER 1.85500 GHz
ers BM 30 kHz
USM 30 kHz
SMP 100 msec

4 cdma carriers (pilot+sync+paging+6 traffic) each as measured after the BTS duplexer.

5816 Dryden Place Carlsbad, CA 92008 [760] 602-8300 Fax [760] 602-8321





in wireless networks

worldwide

#### MM-WAVE CONNECTIONS

important parameter; a positive pin depth can destroy the connector. More details of connector interfaces can be found in the references.

#### **Glass beads**

Glass beads provide package hermaticity and mechanical isolation between the fragile backside connection and the exterior world. The center conductor pin is usually small enough to allow its overlap connection to a standard 10 mil alumina substrate. A typical glass bead assembly is shown in Figure 2.

#### **Backside interface [2]**

Backside interface is the most critical feature of connector use and the one over which the user has the most control. Most poor results and failures occur at the backside interface. The problem is how to connect to a very small (assuming high frequencies) microstrip or CPW transmission line in a way that will satisfy all of the RF and environmental requirements.

First we have to decide how to connect the coax pin to the substrate. Figure 3 shows the end view of two traditional methods and a side view of another possibility. The pin overlap design is the most traditional but has no flexibility in the joint and has a capacitive mismatch. It also requires a high skill solder joint. The wraparound is very inductive at higher frequencies.

The other method requires that gold ribbon be prebonded to the coax pin. However, the final connection is an easy gold ribbon bond which is very good from both an RF and an environmental position. It also allows connection to a very small substrate trace.

In all cases, this is the most critical and sensitive area in the connection system. Ground paths must be kept very short. This means that substrates on carriers must not be used if they allow a longer ground path.

Here are guidelines for dealing with high frequency interconnects:

- Keep the coax entry size as small as possible and have an air dielectric.
- Compensate every change in transmission line size.
- Aside from compensation steps, all transmission lines should be 50 ohms.
- Keep bond connections very short. A 10 mil bond wire gives 10 dB return loss at 90 GHz.
- Provide for stress relief at the coax-substrate interface.
- Keep ground paths short. Beware of carriers. The ideal ground path length is zero.
- Keep everything as simple as possible.

Here are guidelines for dealing with substrates:

- 10 mil microstrip will work above 70 GHz, but using 7.5 mil will cause fewer problems.
- 5 mil Teflon works very well up to 110 GHz.

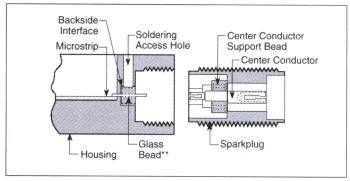



Figure 1. Typical connector system.

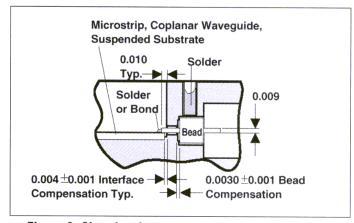
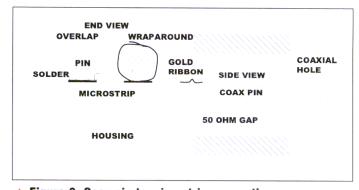




Figure 2. Glass beads.



▲ Figure 3. Coax pin to microstrip connections.

- 5 mil Quartz is very low loss to 110 GHz and has a nice wide trace.
- CPW must be very small to work well. Thin substrates are best.

#### **Orthogonal connections**

Orthogonal connections are particularly useful when using MMICs in high frequency subsystems, allowing connections to be made anywhere in the assembly as opposed to only the perimeter when using standard connections. The examples shown use UT47 coax cable, which can support frequencies up to 110 GHz.



identify practical solutions to your product needs and our engineering turnaround on new products is one of the best in the industry. From new products to our proven designs, we are determined to exceed your expectations.

#### Cellular and PCS Frequency Ranges

- Attenuators
  - convection and conduction cooled
  - low intermodulation distortion
- Terminations
  - convection and conduction cooled
  - low intermodulation distortion

#### **Standard and Custom Applications**

- Divider / Combiners
  - rugged weather-tight available
  - many configurations available
- Couplers
  - compact and cost effective
  - ideal for Cellular and PCS applications

#### BIRD COMPONENT PRODUCTS, INC.



10950 72nd Street North, Suite 107 Largo, Florida 33777-1527 Phone: 727-547-8826 Fax: 727-547-0806 www.birdfla.com E-mail: sales@birdfla.com

#### MM-WAVE CONNECTIONS

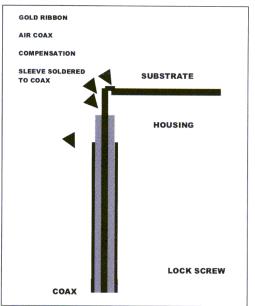



Figure 4. Orthogonal connection.

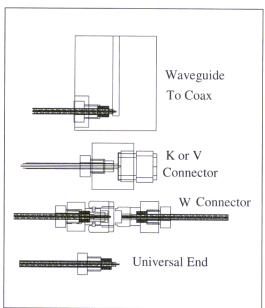



Figure 5. Universal connection system.

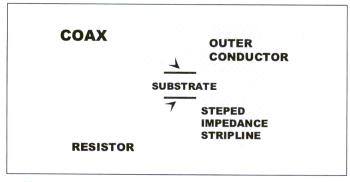
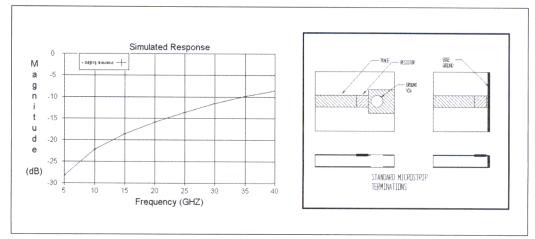



Figure 6. Planar resistor coaxial termination.

The assembly shown in Figure 4 can give return losses in the order of 20 dB to 60 GHz and 16 dB to 90 GHz. The design can be modified for an orthogonal feed through and can also be used as a standard axial connection. The other end of the coax can be adapted to waveguide, a 1 mm connector or other type of coax connector.


#### An alternative connection system

One of the problems with building components at higher frequencies is that the connectors on the component do not always match the available test equipment. This is the case. for instance, if the test equipment is waveguide and the component is coax. One way to solve this problem is to use coax cable as the bridge. UT47 coax with a "universal end" is the

ideal size: it is thin with a small center conductor and can support frequencies up to 110 GHz. The universal end is the same as the one shown in the orthogonal connection. Waveguide to coax transitions using this system can have a return loss of greater than 20 dB over a full waveguide band.

#### **Terminations**

The ideal termination is a reflectionless transition from the transmission line impedance to ground. This is usually is realized as a resistor in the value of the transmission line impedance and surrounded by the proper topology. The most commonly used terminations are the coax variety used to terminate external ports. Terminations used internally in subsystems are usually in microstrip or CPW topologies. High frequency CPW terminations are easy to make. Microstrip terminations usually become increasingly reflective above 20 GHz.



▲ Figure 7. Microstrip terminations.

#### Coaxial terminations

Traditional coax terminations use rod resistors that are about the same size as the coax center conductor of the connector associated with them. At higher frequencies, as the center conductors become smaller.  $\operatorname{rod}$ resistors become difficult to fabricate and are fragile. An alternative design uses planar substrates and a semi-stripline, semi-coax topology. The

he challenge of classifying activity as friendly or hostile has increased with the prevalence of multi-national operations. The result? An increased burden on threat-warning receivers to protect deployed personnel with accurate signal identification and processing. Sage has helped to make these receivers the best they can be with the development of Digital Frequency Discriminators that are half the size of current technology. These 2-18 GHz devices use advanced three phase discriminators, proven MIC techniques, and COTS hardware to perform in lightweight VME packaging. This proven design has allowed engineers to create

valuable rack space for system





## MORE FUNCTIONALITY AND LESS WEIGHT GET YOUR CRITICAL SYSTEMS OFF THE GROUND.

Full Function Subsystem Solutions solve a variety of performance and packaging issues in today's EW platforms. Sage has over 40 years of experience in the area of Passive technologies, including lumped element, microstrip, stripline, and suspended substrate stripline. We couple that experience with our Active product expertise and package it all together as lightweight, broadband, subsystem devices. Look to us for Digital Frequency Discriminators, Detector Log Video Amplifiers, Switched Multiplexers, Digital/Analog RF Memory, and Up/Down converters. As a member of the Filtronic family, we also have the resources to provide vertically integrated solutions for complete program support. Call us, or visit our web site for detailed specifications and options.

Sage - A Legacy of Proven Results.

www.sagelabs.com



11 Huron Drive, Natick, MA 01760 • 508-653-0844 • Fax 508-653-5671

Circle 51

#### MM-WAVE CONNECTIONS

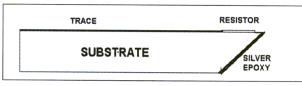
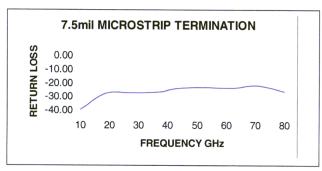




Figure 8. Improved microstrip termination.



▲ Figure 9. Improved microstrip termination performance.

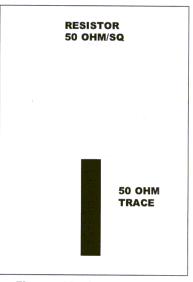



Figure 10. Improved microstrip termination performance.

alumina substrate is easy to fabricate and also serves as a support for the center conductor, eliminating the support bead and its associated mismatch. Terminations using this design can have return losses of greater that 40 dB to 40 GHz and 35 dB to 60 GHz. The design has been used to 110 GHz.

#### **Microstrip terminations**

Standard microstrip terminations give poor results at higher frequencies, as shown in Figure 7. Designs using open circuit stubs work well for narrow bands even at higher frequencies

A design that works well at high frequencies is shown in Figure 8. The tapered ground plane provides the correct topology for a broad band termination.

With the proper shaping of the substrate, the return loss of this termination is greater than 25 dB to 40 GHz and 20 dB to 80 GHz. The best substrate thickness for use above 70 GHz is 7.5 mil alumina or 5 mil Teflon.

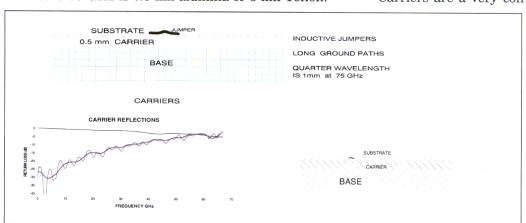



Figure 11. Standard carriers.

#### **CPW** terminations

CPW terminations can work well to high frequencies and are easy to fabricate. CPW substrates are not easy to design at high frequencies as they tend to mode jump. The best performance is achieved using thin alumina substrates with another dielectric and some lossy material attached to the bottom side of the alumina

#### **Dot terminations**

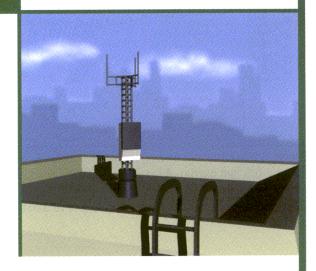
Dot terminations are high frequency, high return loss microstrip terminations that do not require a ground but have a low frequency limit. They consist

of an input trace and a circle of resistance material. The resistance is 50 ohms per square.

The size of the dot determines the low frequency limit of the termination. Dot diameters up to 15 times the trace width will perform to the upper limit of the microstrip. Minimum diameters of the dot should be at least three times the trace width. A dot termination can give 25 dB return loss from 8 to 110 GHz.

#### **Broadband interconnects**

The 40 gigabit optical modulator will dramatically increase the need for broadband high frequency interconnects. DC to 80 GHz connectors and interconnects with low loss and low reflections will be in great demand. Substrates mounted on carriers of standard design will not meet these requirements. This section discusses designs that will meet these interconnect requirements.


Carriers are a very convenient method of mounting

multiple devices. They can be processed outside of the housing and can replaced without destroying the entire subsystem contained within the housing. Carriers can be made of material that matches the expansion coefficient of the substrates, thus allowing the housing to be made of a more common material. They also provide flat surfaces, which allow easy bonding compared to the

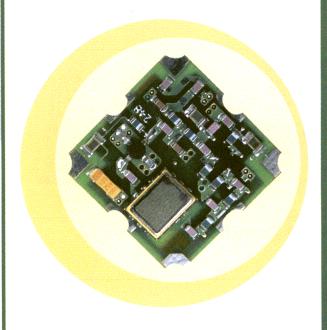
#### SAWTEK OSCILLATORS REALLY DELIVER

#### Sawtek...Your Total SAW Solution!

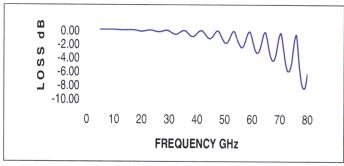
Sawtek's voltage controlled SAW oscillators deliver the specs your need for low g-sensitivity, very low noise floors and low phase noise. The new singleended sinewave oscillator is ideal for broadband applications such as SONET, LMDS/MMDS point-topoint and multi-point microwave systems. Look to Sawtek's proven Surface Transverse Wave (STW)



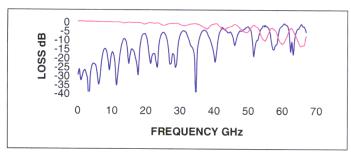
technology for those outdoor installations where environmental conditions make vibration immunity an issue. When your designs demand a better solution and aggressive cost-effectiveness, demand oscillators from Sawtek. They really deliver.


- Frequencies from 400 MHz to 2.4 GHz
- Low phase noise/jitter (-105 dBc/Hz at 1 kHz offset typical)
- Very low noise floor (-165 dBc/Hz starting at 300 kHz offset typical)
- Superb vibration immunity for STW versions (5x10<sup>-10</sup>/g typical maximum)

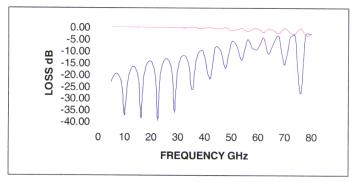



#### www.sawtek.com

Phone: (407) 886-8860 • Fax: (407) 886-7061 E-Mail: info@sawtek.com


Visit Sawtek at booth #2117 at the MTT-S Show.








▲ Graph 1. Insertion loss of a microstrip through line mounted on a 0.5 mm carrier. A long ground path formed by the carrier causes the problem. The results are similar whether connecting to another substrate or to a coax connector.



▲ Graph 2. Measured efffects of the carrier gap.



Graph 3. Simulated effects of the carrier gap.

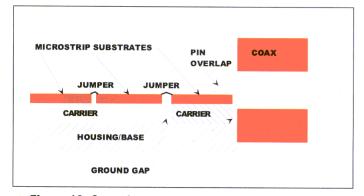


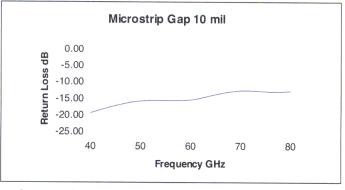

Figure 12. Ground gaps.

housing cavity when devices are mounted directly into housing. However, the carrier introduces a long ground path, which seriously degrades high frequency performance.

Figure 11 shows the details of a standard carrier assembly and the performance of a single gap. The two reflection traces are standard frequency domain and frequency gated by time. Notice the good agreement. Time domain is a very useful tool for measuring this type of mismatch.

The carrier gap can be located internally in the housing or at a connector port. Both gaps cause equivalent problems. Graphs 2 and 3 show both simulated and measured effects of a carrier. In general, the measured data seem to be worse than the simulated data.

Figure 12 also shows both type of gaps in addition to the gap formed by two substrates mounted on the carrier. This gap (Graph 4) also gives a significant mismatch at higher frequencies. The standard pin overlap causes a sizable mismatch at higher frequencies. All of these design features must be refined in order to obtain good high frequency performance.


#### **Solutions**

Narrowband designs can vary the ground path solution so that the mismatches occur outside of the narrow frequency band. Broad band solutions, however, require that long ground paths be eliminated.

#### **Carrier to housing**

The easiest solution is to bridge the gap with a microstrip line, as shown in Figure 13. The line can be preattached to the carrier and connected to the housing or the next carrier by various methods including screws, conductive epoxy, solder or conductive rubber. Conductive rubber can cause problems at high frequencies. The bridge line can also be assembled into the system after the carriers are mounted.

Another method, which is patented, is shown in Figure 14. A flexible ribbon spring, held in place by conductive rubber, fills the gap between carriers and with the trace jumper ribbon, forms a 50-ohm transmission line. This system is flexible, requires no ground solder-



Graph 4. Carrier gap as shown in Figure 12.

Directional Ceiling Mount Antenna, 7 dBi PCS/ISM Band



Dual Directional Ceiling Mount Antenna, 5 dBi PCS/ISM Band



DirectLink™ Series, Models 0-15 dBi AMPS, PCS/DCS, 3.5 GHz ISM (2.4, 5.1, 5.7 GHz)



Integrated Spatial Diversity (2 Antennas) Package, 6.5 dBi ISM Band



Omnidirectional Ceiling Mount Antenna, 2-3 dBi PCS, ISM Band



Heavy Duty Transportation System Omnidirectional Antenna, 3 dBi PCS, ISM Band

## HIGH PERFORMANCE ANTENNAS

#### FOR AMPS/GSM/SMR, PCS/DCS & ISM

Housed in rugged low profile, UV protected housings, Cushcraft's selection of AMPS/GSM/SMR, PCS/DCS and ISM band antennas facilitates installation with an array of versatile mounting options including wall, mast or ceiling mounts for both indoor and outdoor applications. Additionally, each Cushcraft patch antenna is engineered with our patented MicroAir™ technology to ensure superior electrical performance.

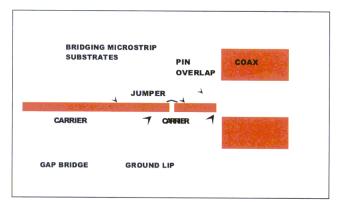
In today's demanding marketplace the ability to deliver high rate digital data streams is the key to customer satisfaction, even for voice communications. Integrating Cushcraft's high quality antennas into your system will give you the competitive edge needed to thrive and grow even in the most technically challenging application environments.

- Low Profile, Aesthetically Pleasing Designs
- Rugged Construction for Indoor/Outdoor Use
- Versatile Mounting Options for All Models
- ► MicroAir<sup>™</sup> Technology in All Panel Antennas

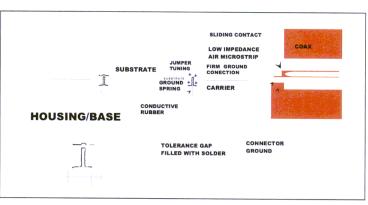




Wide H-Plane (90°) Directional Antenna, 7 dBi PCS, ISM Band


Contact Cushcraft today. Our experienced staff will provide the antenna solution you need.

Contact us at:
CUSHCRAFT CORPORATION
48 PERIMETER ROAD, MANCHESTER, NH 03103 USA
603-627-7877 - 800-258-3860 / (Fax) 603-627-1764 - 800-258-3868
E-mail:sales@cushcraft.com




http://www.cushcraft.com

#### MM-WAVE CONNECTIONS



▲ Figure 13. Bridging substrates.



▲ Figure 14. Alternative designs.

ing and gives very good performance up to 90 GHz.

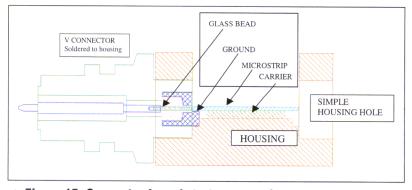
#### Carrier to connector

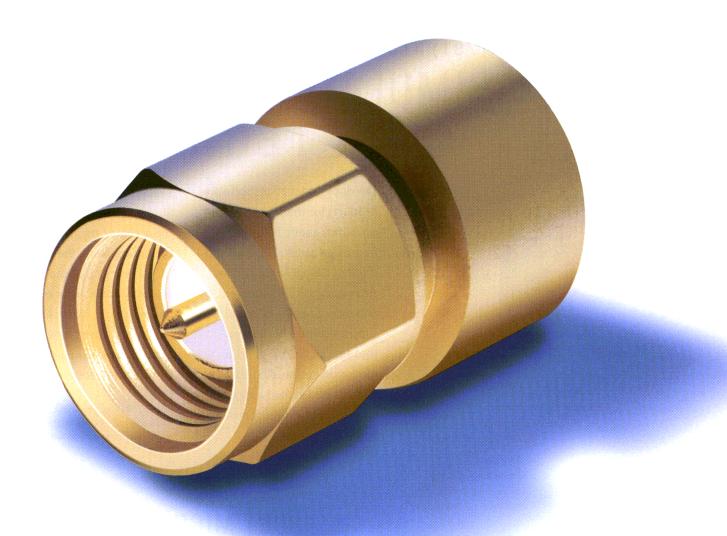
The best solution to this connection is to have a ground lip at the coax interface and a microstrip substrate cantilevered from the carrier and connected to the ground lip. This is shown in Figures 13 and 14. The ground lip can be part of the housing or incorporates into the connector as a newly developed connector. The connector also contains a glass support bead and the required compensation steps. The connector therefore solves the problems of the hermetic seal and ground. The connector is shown in Figure 15. The connector

eliminates the hassle of soldering a glass bead into the housing. A sliding contact is used to connect the coax center conductor to the microstrip trace. This allows a flexible connection and eliminates the capacitive mismatch of the pin overlap design. The sliding contact is bonded to the microstrip trace.

#### Conclusion

Carriers can be used at high frequencies, but care must be taken to eliminate long ground paths. Ground gaps can be bridged using cantilivered substrates. Gaps between substrates cause a significant mismatch above 40 GHz.





Figure 15. Connector for substrates on carriers.

#### References

- 1. "The Connector Interface," *Microwave Journal*, March 1996.
- 2. "Backside Interface," *Microwave Journal*, March 1997.

#### **Author information**

Bill Oldfield is a staff engineer at Anritsu Company (formerly Wiltron). His career has mostly been focused on connecting, calibrating, modifying or terminating 50 ohms. He may be reached via e-mail at boldfield@anritsu.com.



### DC up to 20GHz TERMINATIONS from 7

From FM to cellular to satellite communication circuits, these terminations end all...the broadband KARN-50, ROSE-50, and ANNE-50 terminations from Mini-Circuits. Until now, microwave terminations were usually very expensive, especially custom designs for higher frequencies. But thanks to quantum leaps in design and manufacturing techniques by Mini-Circuits, you could replace high

priced units with these versatile 50 ohm solutions and obtain features such as low VSWR, usability to 20GHz, and rugged construction to withstand severe mechanical vibration and shock, from the low price of only \$9.95ea.(qty.1-9). And high quantity pricing is even more amazing! Finally! Cost effective, high performance microwave terminations...off-the-shelf! Call Mini-Circuits today. Mini-Circuits...we're redefining what VALUE is all about!



Actual Size

SMA Male Connector \$1195 qty.1-9

ANNE-50

ANNE-50CN with 3 1/2" Chain & Cap \$1395 qty.1-9 \$949 qty. 1000

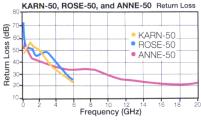
KARN-50 N Type Male Connector \$1195 qty.1-9

\$749 qty. 1000 Return Loss (dB, Typ) Freq. Range (GHz) DC to 2 DC to 4 DC to 6 45

\$735 qty. 1000

Freq. Range (GHz) (dB, Typ) DC to 2 DC to 4 DC to 6 45 35 28

SMB Plug Connector


\$995 qty.1-9

\$749 qty. 1000 Freq. Range Return Loss (GHz) (dB,Typ) (dB,Typ) DC to 4 4 to 10 40 30 10 to 20

Note: Power ratings at 70°C: ANNE-50 and ROSE-50 is 0.50W, derate linearly at 0.005W/°C from 70°C to .35W at 100°C. KARN-50 is 2W, derate linearly at 0.025W/°C to 1.25W at 100°C

ROSE-50









INT'L 110 CIRCLE READER SERVICE CARD

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For quick access to product information see MINI-CIRCUITS CATALOG & WEB SITE The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

www.cst-america.com (781) 416 - 27 82

### COMPUTER SIMULATION



## Application range

Couplers, Cavities, Cellular Phones ...

Coaxial Connectors, Combline Filters ...

Coplanar Structures, Cross Talk Problems ...

Dielectric Filters, Diplexers ...

High Speed Digital Devices, Horn Antennas.

Interconnectors ...

#### IC Packages

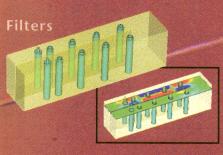
Multipin Connectors, MMICs ... Microstrip Filters, Microstrip Structures Multilayer Structures, Multiplexers ...

MW Heating, MW Plasma Sources ...

Optical Components ...

Patch Antennas, Planar Structures ...

Power Splitters, Polarisers ...


Radar/RCS ...

SAR Calculations / Anatomical Data Set ...

Sensors, Shielding Problems ...

Time Domain Reflectometry (TDR) ...

Waveguide Structures, Wireless Devices ...



8-pole filter from TXRX, USA. The figure shows one of the modes calculated by CST MICROWAVE STUDIO"'s Eigenmode Solver. In addition, the integrated Modal Analysis yields the complete S-parameter matrix.

minin

TSSOP 24 simulated in cooperation

with Infineon,

Munich

IC packag

## TECHNOLOGY

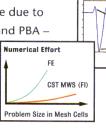
CST develops and markets software products for the simulation of electromagnetic fields in all frequency bands. The establishment of CST of America<sup>™</sup>, Inc. strengthened CST's excellent network of distribution and support centers operating throughout North America. Alongside outstanding software, CST has also earned a reputation for providing excellent customer training and support.

»When we looked at Microwave Studio, it blew us away. The speed, the accuracy, the parameterization, the optimization, the easy-to-learn GUI, all were far ahead of anything presently available, or even soon to be available ... We believe in the best, and the best for volume meshing time domain analysis, is clearly, completely, and totally CST. «

James C. Rautio, President of Sonnet Software, Inc. on the establishment of a worldwide cooperation with CST.

What you can expect from

#### CST MICROWAVE STUDIO™

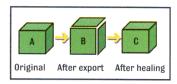

PERFORMANCE

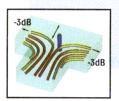
Excellent performance due to incorporation of FIT and PBA the ability to partially Numerical Effort

fill mesh cells, even with curved surfaces.

EASE OF USE

learn and use.





\$11 0,372 0,362 0,363 0,366 0,366 0,366 0,364 0,364 0,364

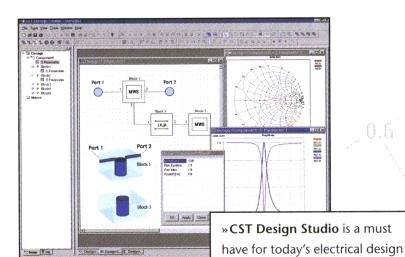
**IMPORT OPTIONS** 

Automatic import of CAD data saves valuable time.

Intuitive GUI makes CST MWS easy to








Optimum design through an advanced optimizer.

### CST DESIGN STUDIO TM

#### CST MICROWAVE STUDIO™ and MAFIA 4

have benefitted from over 20 years experience in the area of numerical field calculation, and have firmly established CST's place at the forefront of CAE software houses.



The Interface of CST DESIGN STUDIO™ A high Q coaxial filter structure split into two non-resonating waveguide parts. The combination of both S-matrices together with an analytical transmission line model allows quick parameter studies.

MAFIA 4

The new modules have been introduced into the Mafia family of codes: MAFIA-TL3 for low frequency problems with parts in motion, and MAFIA-H3, for the calculation of

transient heating processes.

CST DESIGN STUDIO™ can radically speed up the analysis and optimization of complex or highly resonating structures.

How does it work? CST DESIGN STUDIO™ enables the breaking down of complex systems into smaller components. Each of these components can then be analyzed by the simulator best suited to the particular application domain. Finally everything can be combined in CST DESIGN STUDIO™ to obtain the S-parameter results for the entire system.

face allows S-parameter models to be effortlessly assembled, simulated and optimized with RJ45 connector other passive structures. «

Frederic Lecuyer, RF Antenna Design Engineer, Radio Frequency Systems, Inc., a customer of CST of America, Inc.

engineer. Its interface with Micro-

wave Studio is flawless and com-

diversity of waveguide structures

pliments it very well. A large

is easily realized by defining a few parameters. In addition, the powerful Graphical User Inter-

**Time Domain Reflectometry** (TDR), exclusive to the Time Domain, is an important method in the HF design of interconnectors. It delivers valuable information, such as signal delay, impedance jumps, and the origins of reflections. Probes inside the structure

of the propagating signals.

can record the time dependent behaviour

Radiation of a mobile phone from the inside of a BMW.

Growing attention is being paid to 3D field simulation by the automobile industry. Areas of particular interest include antennas' radiation patterns and emc problems.



## Compatibility of Dual Use Standardized FQPSK with Other Data Links and WCDMA

By James A. McCorduck, Entech Engineering and Dr. Kamilo Feher, University of California, Davis and Digcom Inc.

his article discusses the benefits of interoperability of FQPSK systems with lacksquare future and legacy data links. Specifically, the benefits of forward interoperability with 3G wireless systems, such as WCDMA up to 40 Mchips/sec, are described. Other proposals of forward interoperability with future data links include an enhanced ultra-bandwidth efficient FQPSK and 16-state FQAM architectures. Since FQPSK based systems have been proven in commercial and government systems and extensively tested and evaluated by the Department of Defense and NASA, the analysis of backward interoperability with legacy data links, such as GSM, is also included in this discussion. Interoperability is further facilitated by standardization of the FQPSK systems by the Inter-Range Instrumentation Group (IRIG-106-00 for FQPSK-B), and NASA/JPL recommended FQPSK for standardization by the International Consultative Committee for Space Data Systems (CCSDS).

Interoperability of FQPSK [1-3] with

WCDMA and other transceivers offers a wide variety of solutions, including improved bandwidth efficiency, frequency agility for higher bit rate applications and the ability operate in a nonlinearly amplified (NLA) environment. Several corporations (licensees of Feher-patented technologies) have developed a wide bit rate range of products. This article explores the benefits of FQSPK products when incorporated into a WCDMA 3G wireless system in this article. The benefits include a 40 Mchips/sec [3] capability, and signifi-

cant growth in research as compared to the 5 Mchip/sec capability, which is currently in use in most commercial CDMA applications. In addition to the readily available, dual-use products, NASA developed ultra high bit rate FQPSK systems and demonstrated the performance of these systems with satellite links in the 300 Mb/sec to 1 Gb/sec rate [4, 5]. FQPSK systems also provide more promise as an interface to the 3G systems. The second part of this article illustrates the interoperability with other future FQPSK transceivers, resulting in better spectral efficiency and performance. With a goal of both forward and backward interoperability, the third part of this article covers backward interoperability with legacy data links. Utilizing differential encoding (DE) and differential decoding (DD) techniques, interoperability with GSM-based transceivers is discussed [5].

#### Interoperability of FQPSK with WCDMA

Since interoperability with CDMA systems may be essential for integration into the next

| System                                                | <ol> <li>DDSS mode: BPSK, OQPSK, FQPSK</li> <li>clear mode: BPSK, OQPSK, FQPSK</li> </ol>       |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Data rate (Kbit/s)                                    | 256, 560, 660, 772, 1544, 2110                                                                  |
| Chip rate (Mc/s)                                      | 16.984, 30.88, 30, 35                                                                           |
| PN code                                               | 2**16 length                                                                                    |
| Carrier recovery                                      | Decision-directed, phase difference approximation, digital phase shifter (i.e., vector rotator) |
| Convolutional coding and interleaver  IF signal (MHz) | Viterbi decoder<br>70                                                                           |

▲ Table 1. Specifications of an experimental setup circuit for testing FQPSK transceivers up to 35 Mchips/sec with DSSS CDMA [6].

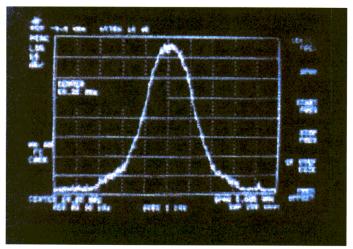
Synergy Microwave Corporation introduces a new line of Miniature Patent Pending I&Q Modulator/Demodulator with High Passive Dynamic Range in a Miniature Package measuring Excellent  $0.5 \times 0.5 \times 0.22$  inch. Dynamic Range Being a passive device, it eliminates the need for external Low Cost supporting circuitry, thus, simplifying the overall application design at reduced cost. These devices are specifically optimized for frequencies in the range of 800 to 2000 MHz. For additional information, contact our Sales and Application Team:

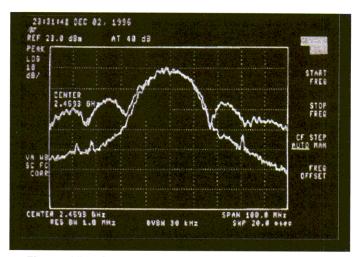
201 McLean Blvd., Paterson, NJ 07504 7 Tel: (973) 881-8800 Fax: (973) 881-8361 E-mail: sales@synergymwave.com

Web Site: www.synergymwave.com

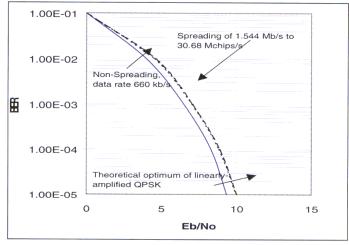
MICROWAVE CORPORATION

Circle 15





Figure 1(a). FQPSK-B spectrum at 1Mb/s and  $f_c = 70$  MHz. This is the spectrum of the recently licensed FQPSK (IRIG-106-00, and recommended for by the International CCSDS) [12].

generation of wireless communications, the benefits of interfacing FQPSK with WCDMA systems is discussed.


Experimental results show FQPSK operation at 16.984, 30.88, 35 and 40 Mchips/sec with various bit rates, confirming bit rate agility [4]. Table 1 shows the specifications of an experimental circuit setup that allows the user to use both FQPSK and DSSS CDMA. Figure 1 shows the spectrum of the hybrid FQPSK/WCDMA system. These figures demonstrate that FQPSK has been measured and evaluated for WCDMA systems. Since FQPSK has been experimentally proven to data rates up to 1 Gb/sec [5], and proven to operate with WCDMA up to 40 Mchips/sec, the integration of these systems is feasible. Using Equation (1) as an approximation for the relationship between the chip rate  $f_{chip}$  of the CDMA access method and the bit rate  $f_b$ of the transceiver, the amount of growth for this system integration is [1, 6].

$$G_p = \frac{BW_{RF}}{BW_{MOD}} = \frac{f_{chip}}{f_b} \tag{1}$$

where  $BW_{RF}$  is the RF bandwidth of the signal and  $BW_{MOD}$  is the modulated signal bandwidth. For example, if 70 MHz is the RF signal and the approximate bandwidth of the FQPSK signal, which supplies about a 1 Mb/sec data rate, is 1 MHz (at -60 dB), then the chip rate is approximately 70 Mchip/sec (assuming the same processing gain). Because potentially higher frequency RF signals result in significantly higher chip rates, the FQPSK architecture is ideally suited for growth in capacity. Figure 2 shows that there is no BER penalty for employing FQPSK transceivers at 30 Mchips/sec in a CDMA system.



▲ Figure 1(b). Spectrum for FQPSK (lower trace) as compared to filtered QPSK (upper trace) with WCDMA. In this setup, FQPSK is operating with a bit rate of 1.544 Mb/sec with a chip rate of 16.84 Mchips/sec. Both transceivers are operating in an NLA RF system [6].



▲ Figure 2. Effect of the WCDMA 3G+ system's integration with FQPSK on the BER performance of transceiver systems. There is no notable performance penalty for incorporating spread spectrum into the transceiver architecture [4].

#### Interoperability of FQPSK with future data links

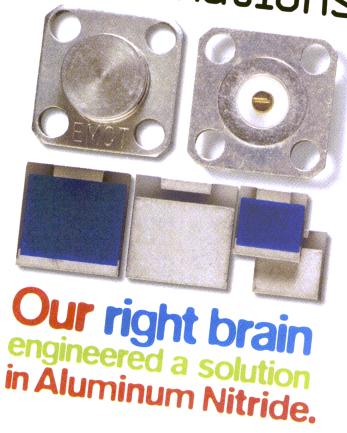

Because future data links, such as enhanced FQPSK and FQAM transceivers, show promise of significantly better performance than the currently installed transceivers, interoperability of these architectures with the standardized FQPSK systems (IRIG-106-00) is essential. Both of these proposed systems employ the current IRIG 106-00 standardized FQPSK architecture as a building block to the respective proposed transceivers.

Figure 3 shows the proposed architecture of 16-state FQAM. The processor currently utilized in the IRIG-106-00 standardized FQPSK is also present in this

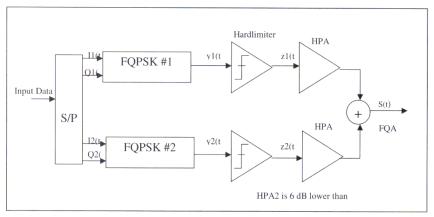
## Right Brain Components.

## Our left brain

realized a need for nontoxic, environmentally safe terminations.



Our high-power chip terminations are now offered in AIN as well as beryllium oxide in power ratings from 10 to 125 watts.


They are designed to minimize the variability of capacitive reactance and localized hot spots associated with trimming. And reduced lot-to-lot variation means your circuit performs without expensive, individual-part tuning. Our recent capacity expansion enables us to maintain our outstanding delivery performance as customer demand increases.

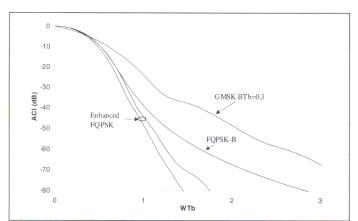
Call us at 856-429-7800

and ask about Aluminium Nitride power terminations, another brainstorm from EMC. Or visit www.emct.com








▲ Figure 3. System architecture for a proposed parallel-type 16-state FQAM data link. This architecture is designed to support NLA environments in the RF spectrum [7].

architecture. This architecture provides significantly increased spectral efficiency in an NLA environment with minor degradation of 0.8 dB in the SER [7].

Figure 4 illustrates the performance of the enhanced-FQPSK transceiver. The enhanced FQPSK architecture significantly improves the BER performance of the current IRIG-106-00 standardized FQPSK. Figure 4 also illustrates that this proposed architecture improves the ACI of the standardized FQPSK. This improvement in BER performance and spectral efficiency is accomplished by incorporating FEC into the standardized FQPSK architecture [7].

#### Interoperability of FQPSK with legacy systems

The key to interoperability between the FQPSK-B and GMSK architectures is the addition of the DE in the FQPSK transmitter circuits and DD in the receiver cir-

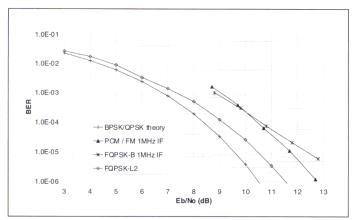


▲ Figure 4 (a). Adjacent channel interference performances of the enhanced FQPSK (variation L1 and L2, from the left curve to the right, respectively), FQPSK-B and GMSK NLA systems. The GMSK receiver uses a fourth order Gaussian bandpass filter equal to 0.6 and a transmitter filter bandwidths equal to 0.3. Enhanced FQPSK uses a much simpler receiver [10,11].

cuits. A DE is added to the FQPSK transmitter architecture for compatibility with a GMSK receiver architecture. Figure 5 shows the proposed configurations of the FQPSK transceiver links with GMSK, MSK, and O-QPSK systems [10].

The algorithm for the DE is [2, 8, 9]:

$$\begin{split} I_{2n} &= b_{2n} + \overline{Q}_{(2n-1)} \\ Q_{(2n+1)} &= b_{(2n+1)} + I_{2n} \end{split} \tag{2}$$


for n>0 and where  $I_2$ ,  $I_4$ ,  $I_6$ , ... and  $Q_3$ ,  $Q_5$ ,  $Q_7$ , ...

The DE and DD algorithms convert the NRZ data sequences between amplitude and phase based systems.

As Figure 5 illustrates, the FQPSK architecture can be integrated with the GMSK systems as either a transmitter or receiver [8]. When FQPSK is inserted as a transmitter, the composite system outperforms the GMSK system by approximately 1 dB at  $P_e=1\rm E-5$ . The spectral efficiency is also improved, since the benefits of the FQPSK transmitter characteristics are fully employed in this configuration.

#### **FQPSK** update

This section describes spectrally efficient Feher's patented FQPSK first and second generation technology developments, commercial and government "dual-use" FQPSK products and test and evaluation results and standardization (CCSDS and IRIG 106-00). US and international customer requirements, recent deployments and standardization programs are also discussed. Numerous government and commercial systems/pro-



▲ Figure 4(b). BER for the enhanced FQPSK (variation L2) and 1 Mb/s FQPSK-B and PCM/FM. The BER performance of FQPSK-B and PCM/FM was measured for a 1Mb/s signal and a 1 MHz IF filter bandwidth. The demodulator of FQPSK-B was a nonoptimized modified QPSK demodulator; the PCM/FM was limiter detected [10.11].

| Commercial                 | L3 Communications, Inc. Telemetry East - Aydin Conic Interstate Electronics Co. (IEC) Microdyne Lockheed Martin RF Networks, Inc. Herley Industries-Vega Tasc-Litton Tybrin | EIP Microwave lota/NeoSoft Emhiser Research Inc. Applied Signal Techology Broadcast Microwave Syst. INTEL Corporation Analog Devices Semco Centraxx |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. Department of Defense | SBIR (US Air Force)<br>ARTM-US Air Force - Edwards<br>CRADA<br>US Navy China Lake and TGRS                                                                                  | CRADA-U.S. Navy-Pt. Magu<br>FIRST<br>FIT<br>Telemetry RCC                                                                                           |
| NASA                       | TCA w/ JPL - NASA<br>300 Mb/s - 600 Mb/s FQPSK<br>NASA:Goddard and NASA/JPL                                                                                                 |                                                                                                                                                     |
| Standarization             | AIAA<br>CCSDS<br>SFCG                                                                                                                                                       | ESA<br>FIT<br>Telemetry IRIG 106-00                                                                                                                 |
| Universities               | New Mexico State University<br>University of California, Davis<br>California Institute of Technology                                                                        | (Cal Tech)                                                                                                                                          |

▲ Table 2. List of Feher patented FQPSK licensees and Feher patented GMSK licensees, manufacturing companies and cooperating U.S. Department of Defense, NASA, AIAA, international CCSDS programs/customers and member organizations of the FQPSK consortium (1995–2000).

grams have immediate and/or near term requirements for spectrally efficient telemetry systems, data links and other spectrally efficient wireless and broadcasting applications. First generation Feher patented FQPSK doubles the spectral efficiency of PCM/FM telemetry, Feher patented GMSK and alternatives, and second generation FQPSK could quadruple the spectral efficiency of these systems. This section includes the use of FQPSK for applications such as telemetry, data links, clear mode, TDMA, CSMA and CDMA, OCDMA, WCDMA and OFDM—COFDM.

Recent R&D achievements and study results demonstrate that enhanced performance first generation FQPSK systems have a 1 dB improved BEP performance as compared to that of inter-operable and fully compatible IRIG 106-00 standardized FQPSK-B bit rate agile 1 Mb/s to 20 Mb/s range transmitters and receivers. Preliminary results of noncoherently demodulated FQPSK systems will be compared with the performance of coherently demodulated FQPSK systems. Fast synchronization and re-synchronization time issues will be also addressed.

Further, adaptively equalized FQPSK systems, with ultra fast dynamic adaptive equalizers, designated as FE, are also discussed. Progress in nonredundant error detection (pseudo-error) based controlled adaptively equalized and SMART antenna -diversity and FE multiple array FQPSK systems is also presented. Low redundancy (5 to 10 percent range) FEC combined with FQPSK is demonstrated to lead to an approximately 5 dB increase in the data link margin.

A key technology overview of several FQPSK-based programs operated and implemented in the 100 kb/s to 40 Mb/s range, and NASA's FQPSK implementations in the ultra high bit rate in the 300 Mb/s to 1 Gb/s range are also highlighted.

Table 2 [13] shows the current licensees for FQPSK.

#### Conclusion

This article highlighted interoperability with 3G and 3G+ wireless systems by showing established experimental results with WCDMA systems. Growth in channel capacity was also demonstrat-

ed for an FQPSK transceiver integrated with the 3G wireless systems. This added capacity is due to FQPSK's proven high bit rate and increased spectral efficiency without any significant degradation in BER perfor-

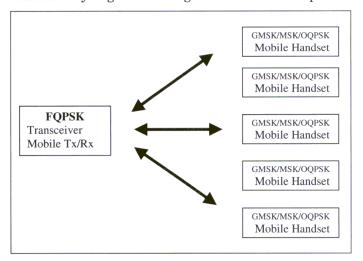



Figure 5. Proposed architecture for the interoperability of FQSPK with legacy data links. The FQPSK hardware can be implemented for both transmitter and receiver applications, as well as for future spectrally efficient data links [10, 14].

mance. Interoperability of FQPSK with future data links was also described. Specifically, the proposed enhanced-FQPSK and the 16-state FQAM transceivers will provide better BER performance, increased spectral efficiency and QAM operation (from FQAM transceiver) with an NLA in the transmitter without significant spectral spreading. This article also showed that FQPSK-B systems can be made compatible with legacy data links, such as GMSK systems, by employing differential encoding and decoding. Particularly, improved BER performance and increased spectral efficiency are added benefits composite ofconstructing a FQPSK/GMSK transceiver.

#### References

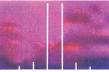
- 1. K. Feher, Wireless Digital Communications: Modulation & Spread Spectrum Applications, Prentice Hall: Englewood Cliffs, NJ, 1995.
- 2. IRIG STANDARD 106-00 "Telemetry Standards," Secretariat of Range Commanders Council, U.S. Army, White Sands, NM, January 2000. (Note: for higher bit rates, when better bandwidth efficiency is required, the IRIG 106-00 telemetry standard specifies the use of Feher's patented FQPSK-B. This standard has been approved for public release and distribution is unlimited).
- 3. K. Feher, et al., "Feher Patented FQPSK, Feher Patented GMSK (FGMSK) and Feher Patented FQAM," U.S. Patents 4,339,724; 4,567,602; 4,644,565; 5,491,457; 5,784,402, post-patent improvements and other U.S. and international patents pending, including international application published under the Patent Cooperation Treaty (PCT); international public. no. WO 00/10272; World Intellectual Property Organization; international publication date February 24, 2000 (PCT internat SN: PCT/US99/17995) and international public. no. WO 00/13382 publication date March 9, 2000 (PCT internat SN PCT/US99/19909). For Feher patented FQPSK, FGMSK and FQAM technology transfers and licensing information on an equal-opportunity, non-discriminatory basis with uniform terms and at a fair market price, see author information at right.
- 4. K. Feher, M. Yu, D. Lee and W.C.Y. Lee, "Innovative Modulation Approaches Enhance CDMA and GSM Performance," *Wireless System Design*, October 1996.
- 5. P. Ghuman, S. Koubek, T. Winkert, A. Gray, N. Lay and T.Y. Yan, "Ultra High Bit Rate (up to 1 GBIT/S) Bandwidth Efficient FQPSK All-Digital Modulator/Demodulator Architectures and NASA Implementations," International Telemetering Conference 2000, San Diego, CA, October 23–26, 2000.
- 6. W. Gao, K. Feher and D.J. Lee, "Interference Performance of Ultra-High Rate (up to 40 Mchips/s) FQPSK Based W-CDMA," *Applied Microwave & Wireless*, March/April 1997: 24–32.
- 7. Wei Gao, Shih-Ho Wang and K. Feher, "Blind Equalization for FQPSK and FQAM Systems in

- Multipath Frequency Selective Fading Channels," International Telemetering Conference 1999, Las Vegas, NV, October 25–28, 1999.
- 8. M.P. Fitz, "Bit Error Probability Analysis of a Digital PLL Based Demodulator of Differentially Encoded BPSK and QPSK," *IEEE Transactions on Communications*, Vol. 42, No. 1, January 1994: 17–21.
- 9. W.J. Weber, "Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems," *IEEE Transactions on Communications*, Vol. Com-26, No. 3, March 1978: 385–91.
- 10. J. McCorduck, M. Haghdad, J.S. Lin, K. Aflatouni, W. Gao and K. Feher, "Peformance Enhancements of IRIG-106-00 Standardized FQPSK-B in a Complex Interference RF Frequency Selective Faded Environment and Interoperability with Legacy Data Links," European Telemetry Conference 2000, Garmisch-Partenkirchen, Germany, May 22–25, 2000.
- 11. J.S. Lin and K. Feher, "Spectrum and BER Performance of a Set of FEC Coded Enhanced FQPSK," International Telemetering Conference 2000, San Diego, CA, October 23–26, 2000.
- 12 M. Haghdad and K. Feher, "Performance of FQPSK Transceivers in a Complex Real-Life Interference Environment," International Telemetering Conference 2000, San Diego, CA, October 23–26, 2000.
- 13. K. Feher, "Spectral Efficiency of Commercial Wireless and Telemetry Systems is Doubled with IRIG-106-00 Standardized FQPSK and is Quadrupled with FQAM," International Telemetering Conference 2000, San Diego, CA, October 23–26, 2000.
- 14. J. McCorduck and K. Feher, "Compatibility of IRIG-106-00 Standardized Feher-Patented FQPSK with Other Data Links and Wideband W-CDMA," International Telemetering Conference 2000, San Diego, CA, October 23–26, 2000.

#### **Author information**

James A. McCorduck is an engineer with Entech. He recently obtained his master's degree in engineering at the University of California-Davis. He can be reached at 8061 Cantata Way, Antelope, CA 95843; Tel: 916-338-4482; Fax: 916-332-5507; E-mail: engtec@aol.com.

Dr. Kamilo Feher is a professor of engineering at the University of California-Davis. He also heads Digcom, a digital communications development, consulting and intellectual property licensing organization. He can be reached at 44685 Country Club Drive, El Macero, CA 95618; Tel: 530-753-0738; Fax: 530-753-1788; E-mail: feherk@yahoo.com.


For FQPSK Consortium, FQPSK-GMSK licensing and technology transfer information, contact Digcom, Inc., c/o Dr. Kamilo Feher, 44685 Country Club Drive; El Macero, CA 95618; Tel: 530-753-0738; Fax: 530-753-1788; E-mail: feherk@yahoo.com; Internet: www.fehertechnologies.com.

# HIGH IP3 MIXERS +30dBm IP3 SYN

5 to 2500MHz from \$14.95

The popularity of wireless communication services is soaring, but when signal overcrowding creates intermodulation distortion... Mini-Circuits has the solution! Our full range of low distortion, high IP3 SYM mixers provide the muscle it takes to suppress noisy intermods and unwanted signals. At the same time, these affordable surface mount solutions achieve low conversion

loss and excellent L-R, L-I isolation. Developed for both analog and digital use, applications include airphone, cellular and cordless phones, radar, satellite, FM Broadcast, ISM, PCS, and PCN. Achieve the high performance your customers expect. Specify low loss, high IP3 SYM mixers from Mini-Circuits. It's the *clear* choice!



| TYPICAL SPECIF | Freq.<br>(MHz) | IP3<br>Midband<br>(dBm) | Isolation<br>(dB)<br>L-R L-I | Conv. Loss<br>Midband<br>(dB) | Price \$ea.<br>Qtv. 1-24 |
|----------------|----------------|-------------------------|------------------------------|-------------------------------|--------------------------|
| Model          | (IVIF1Z)       | (UDIII)                 | L-N L-I                      | (UD)                          | Qty. 1-24                |
| SYM-18H        | 5 -1800        | 30                      | 45 40                        | 5.75                          | 16.85                    |
| SYM-15VH       | 10 -1500       | 31                      | 45 35                        | 6.5                           | 27.95                    |
| SYM-25DHW      | 80-2500        | 30                      | 37 33                        | 6.4                           | 24.95*                   |
| SYM-14H        | 100-1370       | 30                      | 36 30                        | 6.5                           | 14.95                    |
| SYM-10DH       | 800 -1000      | 31                      | 45 29                        | 7.6                           | 17.80                    |
| SYM-22H        | 1500 -2200     | 30                      | 33 38                        | 5.6                           | 18.75                    |
| SYM-20DH       | 1700-2000      | 32                      | 35 34                        | 6.7                           | 14.95                    |

All models are surface mount and available in tape and reel. LO=+17dBm except SYM-15VH LO=+23dBm



\*SYM-25DHW: 1000 Quantity Price Only \$6.45 Ea.

Mini-Circuits...we're redefining what VALUE is all about!







CIRCLE READER SERVICE CARD

P.O.Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For quick access to product information see MINI-CIRCUITS CATALOG & WEB SITE The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: http://www.minicircuits.com





**Higher Q** Compared to non-wirewound chip coils, most Coilcraft parts have Q factors that are 50% to 150% higher.

**Lower DCR** Put as much as 3 times the current through our chip inductors thanks to their low DC resistance.

**Higher SRF** Ceramic construction shifts SRFs to much higher frequencies than multilayer or ferrite designs.

**Tighter tolerance** Precision manufacturing techniques let us consistently produce parts with 2% inductance tolerance. Our most popular values also come in 1% tolerance.

**Better support** From our engineer-friendly web site to our global manufacturing capabilities, Coilcraft is just plain easier to do business with.

ORDER YOU

Visit us at www.coilcraft.com for technical data, free samples, simulation models and more.



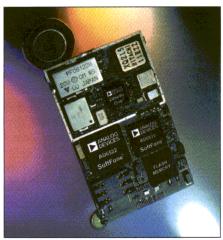


ON THE WEB

#### **SEMICONDUCTORS**

#### **5 GHz radio chipset**

Raytheon Company's Commercial Electronics division introduces a 54 Mbps radio chipset, called Tondelayo, based on the IEEE



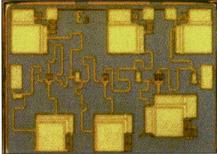

802.11(a) standard for high speed wireless networks in the 5 GHz UNII bands. Features include a power amplifier/switch module; RF, IF and baseband component chips; CardBus and PCI reference designs; and a suite of drivers.

Raytheon Company Circle #157

#### Single-chip radio

Analog Devices has released its next-generation OthelloOne<sup>™</sup> direct conversion radio chipset for GSM/GPRS cellular phones and wireless Internet devices. Features




include a complete direct-conversion transceiver on a single chip; LNAs, RF power control and low-dropout voltage regulators; 40 percent reduction in total component count and PC board area compared

to original Othello; support for GSM/DCS/PCS voice and GPRS/EDGE data applications; compatibility with Analog Devices SoftFone baseband chipset; 51 total components for a three-band GSM radio; and a 48-lead LFCSP (chip-scale) package.

Analog Devices Circle #158

#### **MMIC** amplifier products

Fujitsu Compound Semiconductor announces the expansion of its Low Noise Amplifier MMIC product line. Fujitsu is introducing two new millimeter-wave, high power



MMIC amplifier products covering the 24 to 40 GHz frequency band with output power of up to 9 dBm. These new devices are designed for point-to-point or point-to-multipoint radio link and Local Multipoint Distribution System applications.

Fujitsu Compound Semiconductor, Inc. Circle #159

#### Low noise amplifier

Stanford Microdevices introduces the SLX-2043, a new pHEMT-based low-noise amplifier module suited to 2G/3G wireless infrastructure and fixed wireless applications. This product simultaneously offers low-noise and highintercept performance, with a typical noise figure of 1.1 dB and a typical output intercept of 34 dBm. The part offers 15 dB of gain, which results in an input intercept of 19 dBm. This LNA offers input and output match without external matching components and is unconditionally stable. It operates from a single 4V supply, dissipating under 0.5 watt, and uses internal gate bias circuitry, making it extremely easy to use in a wide variety of applications.

Stanford Microdevices Circle #160

#### Wireless chipset

DMC Stratex Networks will begin volume shipping this month of products powered by its new wireless chipset. The chipset, Vantex™, uses quadrature amplitude modulation (QAM) technology to enable high-capacity and ultrahigh-capacity point-to-point wireless radios for cellular transmission and broadband access applications. Vantex delivers wireless modulations from 4 QAM and bit rates from 4 Mbps to 311 Mbps in a single radio.

DMC Stratex Networks Circle #161

#### **RFIC** upconverter

New from NEC and available now from California Eastern Labs is the UPC8172TB upconverter. Designed for use in the transmit chain, it combines low power consumption, high output power and



high linearity with operation to 2.5 GHz. The UPC8172TB is manufactured using NEC's 25 GHz  $f_T$  UHSO silicon bipolar process, which uses direct silicon nitride passivation film and gold electrodes resulting in consistency and reliability. The UPC8172TB is priced at \$1.43 in 12,000-piece quantities.

California Eastern Labs Circle #162

#### **Products**


#### **Bipolar transistor**

GHz Technology announces the release of the GHz20060, its newest transistor for linear wireless communication systems. GHz20060 is a simplified version of GHz Technology's double input matched wider bandwidth 1920CD60. It is a 60-watt (PEP), 26-volt, Class AB bipolar transistor for use in the 1800 to 2000 MHz frequency range, with a minimum power gain of 9 dB.

GHz Technology, Inc. Circle #163

#### **Vector modulators**

Alpha Industries has introduced the VM series of vector modulators. These eight-chip, BGA packaged solutions can be integrated into base station MCPA applications to increase bandwidth efficiency and support high-speed data transmis-



sion for 2.5G systems. The vector modulator offers 360 degrees of phase control and a large linear amplitude adjustment range.

**Alpha Industries** Circle #164

#### RF power amplifiers

M/A-COM has announced two integrated circuit power amplifiers for use in cellular GSM and DCS GPRS wireless handsets. MAAPSS0004 and MAAPSS0005 RF power amplifiers, for GSM and DCS bands respectively, meet

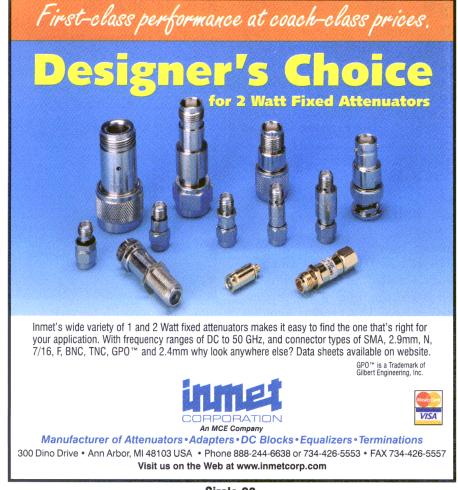
GPRS specifications and are the first to include all 50 ohm input and output matching in a compact  $5 \times 5$ plastic micro leadframe (FQFP-N) package. The devices are priced for high volume applications at less than \$1.99 each in quantities of 100,000 or more.

M/A-COM Circle #165

#### **HBTs for wireless handsets**

Kopin Corporation introduces InGaP/GaInAsN HBTs. structures enhance the performance of HBT transistors within the existing GaAs manufacturing platform. Kopin has been successful in incorporating indium and nitrogen into the base layers of the HBTs and has achieved substantial reductions in turn-on voltage of more than 150 mV with the InGaP/GaInAsN structures, while retaining device characteristics.

**Kopin Corporation** Circle #166


#### Field effect transistor for cellular radio

Ericsson Microelectronics has introduced the PTF10161 GOLD-MOS field effect transistor. This new component delivers a minimum of 165 watts RF output at 894 MHz from a 28 volt supply. Typical figures for efficiency and power gain are 50 percent and 16 dB, respectively. The PTF10161 is designed for use in cellular radio applications from 869 MHz to 894 MHz and provides IMD performance to bipolar transistors, largely due to the more linear transfer function of LDMOS compared to the bipolar technology.

**Ericsson Microelectronics** Circle #167

#### Single supply pHEMT

Agilent Technologies has introduced a small-signal E-pHEMT device, the first in a family of highgain, highly linear and very low noise transistors. The ATF-54143



#### **Products**

offers performance, size and design advantages for applications such as tower-mounted amplifiers and front-end LNAs for base stations operating in GSM, E-GSM and W-CDMA systems at 900 MHz and 1.9 GHz. The ATF-54143 device is priced at \$1.97 in quantities of 25,000 to 49,999 pieces.

Agilent Technologies, Inc. Circle #168

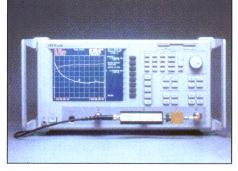
#### **TEST EQUIPMENT**

#### Low phase noise dual range synthesizer

Programmed Test Sources has released the new PTS 250SX-51, a versatile dual-range frequency generator offering broad coverage from 1 to 250 MHz, as well as 5 to  $20~\mu s$  switching between any two frequencies with a

resolution of 1 Hz. Output is 13 dBm, and spurious outputs are -70 dB referenced to +13 dBm. The unit can be optionally supplied with two different frequency




standards with moderate or high stability  $(3 \times 10^{-9}/\text{day})$ . SSB phase noise is –123 dBc at 10 kHz offset from the carrier. Where even better phase noise is desired, the unit can be set to produce output frequencies from 1 to 25 MHz. Spurious outputs are again –70 dB, and output of +13 dBm (into 50 ohm) is available. SSB phase noise at 20 kHz offset is –141 dBc. The unit is available with remote control (BCD or GPIB) and manual controls.

Programmed Test Sources, Inc. Circle #169

#### **Enhanced network measurement system**

Anritsu Company has introduced the MS4600/4B option for its Scorpion MS46xx RF Vector Network Measurement System (VNMS). The MS4600/4B

extends the noise figure frequency of the VNMS to 6 GHz so it can analyze low noise amplifiers (LNAs) and other devices covering the 5.2 to 5.8 GHz band that are used in



applications such as ETC, HIPERLAN, WLAN and ISM. The MS4600/4B is priced at \$16,000.

Anritsu Company Circle #170



Custom design and manufacture of RF/Microwave cavity filters and diplexers from 350MHz to 50GHz, with low Insertion loss and excellent Return loss. High speed modelling and high accuracy machining produce new designs within days, often without the need for any cumbersome tuning screws. This improves reliability and stability in field use. Ideal for point to point radio, LMDS and satellite communication applications.

Make Quasar your first choice for filters and diplexers.





**Quasar Microwave Technology Limited** 

Battle Road · Heathfield · Newton Abbot · Devon TQ12 6XU · England. Tel: +44 (0)1626 834222 Fax: +44 (0)1626 832994

www.gmtl.com

Circle 78



#### **CDPD** test suite

IFR Systems has announced the release of a new software test suite that tests Cellular Digital Packet Data (CDPD) capabilities on wireless cellular handsets and wireless modems. Designed for use with the IFR 2959 Advanced Multi-mode Cellular Test Set, the software suite allows users to test CDPD

performance of mobile phones and modems operating at 19.2Kbps.

IFR Systems, Inc. Circle #171

#### Power amplifier test set

Agilent Technologies has unveiled its Handset Power Amplifier (PA) ValiFire system, which helps designers creating power-amplifiers for cell phone handsets to reduce product development time and costs. The system helps shrink the development cycle by reducing the time needed to set up and configure test assemblies and write test code for design verification. It also allows easy comparison and correlation of simulated versus measured results. Prices start at \$42,000 for the proprietary software. Pricing for the full system, including hardware and software, starts at \$246,000.

Agilent Technologies, Inc. Circle #172

#### Field engineering kit

Bird Component Products has introduced its newest field transportable component kit. The plastic case has a retractable handle of



rollers for ease of moving from site to site. Foam shelves are configured for a variety of Bird components including attenu ators, terminations, couplers and divider/-combiners. The kits' dimensions are 25  $\times$  15  $\times$  14 inches and is assembled for easy access and re-stocking.

Bird Component Products Circle #173

#### **FREQUENCY CONTROL**

#### Monolithic VCO with differential buffered output

Maxim Integrated Products introduces the MAX2753 2.4 GHz monolithic VCO with differential





#### www.werlatone.com

Directional Couplers Combiners Dividers 90°/180° Hybrids



SINCE 1965

Werlatone, Inc. 2095 Route 22 PO Box 47 Brewster, NY 10509 914.279.6187 FAX.279.7404

#### **Products**

output, which integrates the oscillator, tank circuit and a matched output buffer, all in the small 8-pin  $\mu$ MAX package. **Applications** include cordless phones, HomeRF, Bluetooth and other propietary radios operating in the 2.4 GHz ISM band.

**Maxim Integrated Products** Circle #174

#### **Commercial PLL**

Vari-L Company announces its Model PLL400-915, which generates frequencies from 902 to 928



MHz in 200 kHz steps. The unit typically requires 19 mA of current from a 5.0 V supply voltage. Typical phase noise at 0.5 kHz offset is -84 dBc/Hz and the typical phase noise at 100 kHz offset is -131 dBc/Hz. Phase detector spurious suppression is typically -82 dBc. Typical output power is 4.0 dBm. Second harmonic suppression is typically -13 dBc and third harmonic suppression is typically –27 dBc.

Vari-L Company, Inc. **Circle #175** 

#### **Crystal ideal for portable** and wireless applications

Fox Electronics has introduced a new crystal that provides a costeffective alternative for portable, wireless and other applications with space and budget constraints. The new Fox FUE crystal measures



just  $13.4 \times 5.08$  mm with a profile of 4.6 mm, an exact match to the footprint of Epson's part #MA505. The new crystal offers a frequency range of 3.579545 MHz to 66.6667 MHz; a frequency tolerance of ±50 PPM; a frequency ability of ±80 PPM or less depending on frequency; and an operating temperature range of  $-20^{\circ}$  to  $+70^{\circ}$  C. Prices for the Fox FUE Crystal start at \$0.44 in quantities of 10,000.

**Fox Electronics** Circle #176



#### Switches and Power Dividers

JFW Industries continues to redefine high performance RF switches and power dividers at competitive prices. With over 1,500 individual models currently available and custom design capabilities, JFW has the switching and power divider solutions that you need. Recent innovations include 2 and 4 way dividers optimized for cellular and PCS applications with a guaranteed minimum isolation of 40 dB, as well as

1P2T and 1P4T solid-state switches designed specifically for 3 G applications up to 3 GHz. For more information, please contact us or visit the Switch and Power Divider sections on our web site at www.jfwindustries.com/rfswitches.htm

www.ifwindustries.com/dividers.html

#### JFW Industries, Inc.

Specialists in Attenuation and RF Switching

TEL (317) 887-1340 • Toll Free 1 (877) 887-4539 • Fax (317) 881-6790

5134 Commerce Square Dr. • Indianapolis, Indiana 46237

Internet- http://www.jfwindustries.com E-mail- sales@ifwindustries.com ISO 9001 Certified

Circle 88

#### You need to design communication systems with speed and flexibility.

#### succeed with Symphony

Encode, multiplex, modulate, upconvert, filter, amplify, transmit, receive, reverse and recover. Symphony's end-to-end communication system design suite lets you simulate your baseband, transceiver and channel with speed and flexibility.

Make key architectural decisions and component specifications at any stage of your development. Optimize performance such as noise figure, BER,

ACPR, or SINAD with a comprehensive library of RF and

DSP behavioral models, along with

frequency, discrete-time

domain and mixed mode analyses.

Symphony provides the speed and power for simulating systems such as GSM, CDMA and 3G. As a part of

Ansoft's Serenade Design

Environment, Symphony provides a seamless link to circuit simulation, 3D and planar electromagnetics in addition to Matlab co-simulation.

Design with speed and flexibility.

Discover the difference Symphony makes in your system development and component specification.

For your free evaluation copy of Symphony, or any of the tools in Ansoft's Serenade Design Environment call 412-261-3200 or send e-mail to info@ansoft.com.

Opening a new world in Analog, Digital, Signal Integrity, RF, and Microwave Design

Check out: http://www.ansoft.com/No-Boundaries.html

#### Rapid Deployment



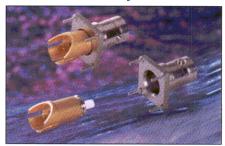
high performance EDA

www.ansoft.com



#### **CABLES & CONNECTORS**

#### **Mating connector series**


Compel Electronics announces the availability of its 1.0/2.3 connector series. With 50-ohm versions operating to 10 GHz and 75-ohm versions operating to 3 GHz, the new 1.0/2.3 line offers threaded, snap-on, slide-in, push-pull and

DIN mating configurations. To facilitate numerous applications, designs are available for cable, PCB and bulkhead mounting in straight, U and angled styles. The series also includes in-series adaptors, monitor points and terminations.

Compel Electronics, Inc. Circle #177

#### **BNC** bulkhead jack

Trompeter Electronics announces a 75 ohm BNC separable circuit board jack for interconnecting mother and daughter boards. This connector assembly is ideal for

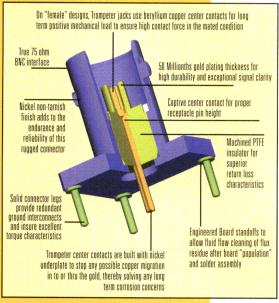


launching high frequency signals directly from the edge of a p.c. board through the motherboard into a coax cable. The UCBJSE20F offers return loss values better than -25 dB up through 3 GHz and handles ~3 pounds of insertion force.

Trompeter Electronics Circle #178

#### TNC coaxial connectors

Tru-Connector Corporation has introduced a new series of TNC connectors featuring an expanded



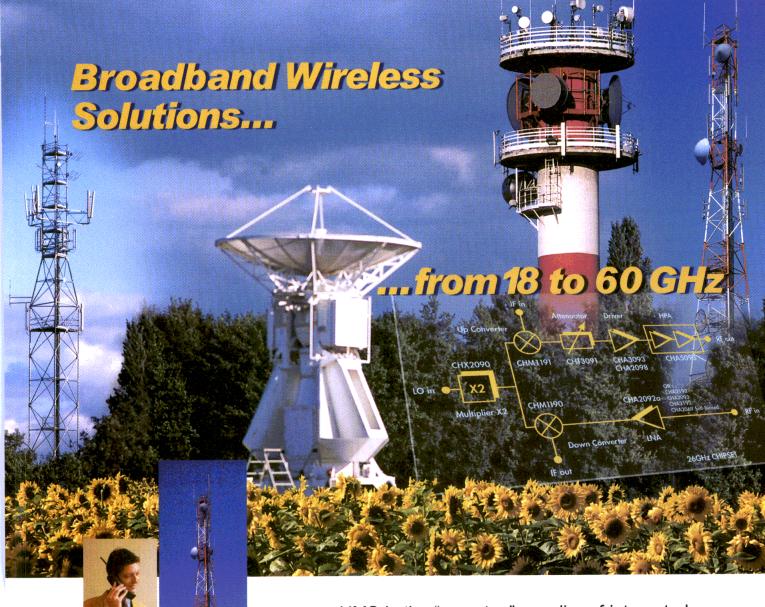

## Trompeter PCB coax series

transitioning coax to microstrip

For reasons of controlled impedance, high frequency signal management on a printed circuit board is often achieved using microstrip design. High bandwidth signals, such as video and telco DS3, are 75 ohm and coaxial. The challenge of connecting the coax signal to microstrip lies in the pcb-mounted RF connector. Trompeter answers that challenge with a new line of products designed to deliver high bandwidth data rates and superb signal clarity for demanding applications.

To learn more about this new line of products, request a copy of Trompeter's PCB Design Guide - 44 pages of tutorial-style information on how to manage RF signals, design guidelines, and a selection of PCB coax products.




9 Reasons Why Trompeter PCB-Mounted Connectors Perform Better



GET PRODUCT FAST... VISIT OUR WEBSITE TODAY!
www.trompeter.com or call 800 982-2629

Circle 40







UMS is the "one stop" supplier of integrated circuits covering the broadband wireless requirements from very low noise to high power, using PHEMT technologies up to 94GHz.



#### united monolithic semiconductors





**Engineered Solutions** 

Call 1-800-737-6937 to find out how Richardson can support your wireless and microwave programs or visit www.rfpowernet.com/ums.asp



More than 60 locations worldwide to serve you. Email: rwc@rell.com Internet: www.rfpowernet.com/ums.asp, Toll Free: Richardson Electronics: 800-RF-POWER or 800-737-6937 (U.S. & Canada), Australia: Castle Hill ACN 069 808 108 +61 (2) 9894-7288, Bayswater ACN 069 808 108, +61 (3) 9738-0733, Brazil: São Paulo +55 (11) 3845-6199, Rio De Janeiro +55 (21) 521-4004, China: Shanghai +86 (021) 6440-6400, China: Shanghai +86 1284, Colombia, Sante Fe de Bogota, DC (57-1) 636-1028, Denmark: Hedenhusene +45 4655-5630, Finland: Helsinki +35 (8) 9386-90110, France: Colombes Cedex +33.1.55.66.00.30, Nozay +33.1.69.80.71.33, Germany: Puchheim +49 (89) 890 214-0, Hamburg +49 (40) 555 88 410, Italy: Agrate (MI) +39 (039) 653 145, Roma +39 (06) 41.73.37.51, Sesto Fiorentino (FL) +39 (055) 42.08.31, Japan: Osaka +81 (6) 6314-5557, Tokyo +81 [3] 5215-1577, Korea: Seoul +82 (2) 539-4731, Malaysia: Selangor 603-5511-5421, Mexico: Mexico City +52 (5) 674-2228, Guadalajara +52 (3) 645-4641, Phillippines: Pasig City 63 (2) 636-8891, Singapore +65 487-5995, **Spain**: Barcelona +34 (93) 415 8303, Madrid +34 (91) 528 3700, **Sweden**: Stockholm +46 8 564 705 90, **Taiwan**: Taipei +886 (2) 2698-3288, **Thailand**: Bangkok +66 (2) 749-4402, **The Netherlands**: Amsterdam +31 (20) 446 7070, **Turkey**: Istanbul +90 212 257 9506, **United Kingdom**: Slough +44 (1753) 733010, **Vietnam**: Ho Chi Minh City +84 (8) 823-3016, for other international inquiries call **Corporate** Headquarters: LaFox, IL (630) 208-2200, Fax (630) 208-2550. © 2001 Richardson Electronics, Ltd. MK1494

www.rfpowernet.com/ums.asp 1-800-RFPOWER 1-800-737-6937

#### **Products**

frequency range for military, aviation and telecom applications. The TNC 18 GHz coaxial connectors feature a frequency range that has been extended by modifying their interface dimensions, while conforming to MIL-C-39012 interface standards. Offered as plugs, jacks and receptacles, they can be manufactured to customer specifications. The connectors are priced from

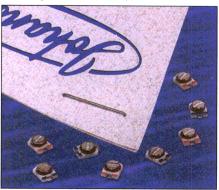
\$9.95 each, depending upon construction and quantity.

**Tru-Connector Corporation** Circle #179

#### High performance cable assemblies

Times Microwave Systems has introduced its line of flexible 50 ohm Testmate cable assemblies. Designed for operation up to 18 GHz or 40 GHz, Testmate cables feature a proprietary triple shield-




ing system, and several designs offer interchangeable connector heads. Testmate cable assemblies have low attenuation, long term electrical stability and are ruggedized for daily dependability in a wide range of applications including site/field testing, test labs, production line testing, quality/maintenance testing and fixed RF system interconnects.

**Times Microwave Systems** Circle #180

#### **PASSIVE COMPONENTS**

#### Ceramic chip trimmers

Johanson Manufacturing introduces the 9344 series ceramic chip trimmer capacitors, economical single-turn, ceramic dielectric capacitors designed for high volume commercial applications. These surface mount trimmers are extremely small in size, and their con-



struction allows them to be used in applications where reflow soldering is part of the manufacturing procedure. The series is available in 5 capacitance ranges from 1.7 to 3.0 pF to 5.5 to 30 pF. They have a



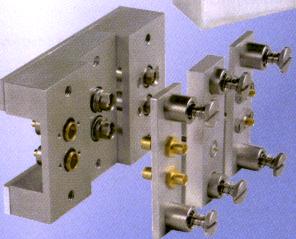
#### BLIND MATE BMA, BMZ, BZ Connectors & Components

#### **Features**

 Offers the advantage of slide-on mating while providing superior microwave performance

Unique spring-loading mechanism allows for axial and radial misalignment

- Increased package densities
- Quick connect/disconnect
- Lower applied cost
- First QPL source for Mil PRF-31031


#### **Configurations**

- Semi-rigid and flexible cable connectors
- Hermetic versions and adapters
- Fixed and floating versions
- Low profile
- High power
- Stripline and microstrip launchers
- Adapter
- Terminations

#### **Typical Applications**

- Radars and sensors
- Integrated avionics
- Missile systems
- Navigation systems
- Automated test equipment
- Satellite communication
- Wireless/broadcast





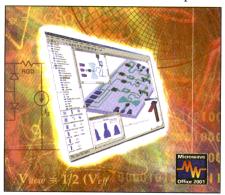


RF Connectors & Components

3301 Electronics Way, West Palm Beach, Florida 33407 Phone: 561-840-1800 • FAX: 561-842-6277 • E-Mail: sales@svmicro.com

Website: www.svmicrowave.com

#### **Products**


working voltage of 100 VDC and an operating temperature range of  $-25^{\circ}$  C to  $+85^{\circ}$  C. The capacitors are packaged 1,000 pieces on a 7 inch reel. They are priced at \$0.24 each at 5,000 pieces.

Johanson Manufacturing Circle #181

#### SOFTWARE

#### Design software update

Applied Wave Research has announced the initial shipments of Microwave Office™ 2001. Improve-



ments in Microwave Office 2001 include new COM-based Design Automation Interface, a new harmonic balance simulator, new layout editing features and design rule checking and new nonlinear and linear models.

Applied Wave Research Circle #182

#### **EM** simulation

Ansoft Corporation has introduced version 8.0 of its High Frequency Structure Simulator (Ansoft HFSS), a full-wave finite element electromagnectic simulator that enables engineers to design three-dimensional high-frequency structures such as connectors. IC packages and antennas found in cellular telephones, broadband systems and microwave circuits. Additional features of Ansoft HFSS V.8 include common and differential modes, modes-to-nodes, fast sweep, lumped RLCs, macro editor, macro interface and wizards.

Ansoft Corporation Circle #183

#### 3D EM package

CST of America announces the release of CST Microwave Studio™ version 3.0 – a specialized tool for the solution of 3D EM high frequency problems. Among the 480 new features are: SAR calculation and human data set interface, adaptive mesh refinement, extended dynamic SPICE extraction, surface impedance for metallic losses, parallelisation of solvers for multiprocessor systems, plane waves and RCS calculation.

CST of America Circle #184

#### SIGNAL PROCESSING

#### **ENG** band filter

Microwave Filter Company introduces a highly selective bandpass filter that passes the full ENG band (1993 to 2107 MHz), while providing suppression of the close PCS frequencies. The model 13969 offers less than 1 dB insertion loss at center frequency and typically less than 2 dB at band edges. Maximum VSWR over the operating band is 1.5:1. Rejection is typically greater than 10 dB at 1988 MHz.

Microwave Filter Company Circle #185

#### **SMT** band pass filters

RLC Electronics's new surface mount filters offer the same frequency response characteristics as



RLC's existing MBP micro miniature filters. Units capable of withstanding automated soldering temperatures can also be supplied, if required.

RLC Electronics, Inc. Circle #186



#### 4 way splitter/combiner for CATV frequencies

Mini-Circuits now offers a new JS4PS-9-75 for designers requiring a 4 way 0 degree power splitter or combiner for 75 ohm systems operating in the 50 to 860 MHz band. Equipped with solder plated J leads for solderability and strain relief, this surface mount unit exhibits typically high 25 dB isolation, input matching and output matching with VSWR typically 1.20:1 in/1.3:1 out. Amplitude unbalance is at 0.15 dB typical. Maximum power input is .50 W. The unit is priced at \$20.95 each in quantities of 1-9.

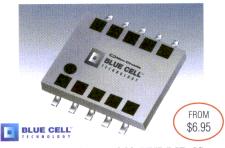
Mini-Circuits Circle #187

#### **Transfer switch**

Dow-Key Microwave's newest product, an Ultra-High Power Transfer Switch, extends high power RF coaxial switching. Specifications include a frequency range of DC -2 GHz; maximum



VSWR of 1.25:1; maximum insertion loss of 0.25 dB; minumum isolation of 65 dB; and power handling at 4 KW.C.W. up to 1 GHz and 2 KW C.W up to 2 GHz.


Dow-Key Microwave Circle #188

## RF/IF MICROWAVE COMPONENTS



#### 2 TO 1100MHz RF TRANSFORMER FOR IMPEDANCE MATCHING

Designed for impedance matching applications, Mini-Circuits low cost TC4-11 RF transformer provides 4:1 impedance ratio (50 ohms primary, 12.5 ohms secondary) in the broad 2 to 1100MHz band. Referenced to midband loss, users can expect 1dB insertion loss in the 5 to 700MHz range and 2dB loss bandwide. This leadless surface mount transformer is housed in an open style aqueous washable package with ceramic base. Absolute maximum RF input power is 0.25W.



#### 1900 TO 2400MHz 90° HYBRID IS ULTRA-THIN 0.050" SOLUTION

Mini-Circuits 1900 to 2400MHz broadband QBA-24 is a 2way-90° power splitter developed with high 21dB typical isolation and low 0.54dB insertion loss (typ, avg. of coupled outputs less 3dB). As a splitter, these patented Blue Cell™ hybrid's are capable of handling 20W (max.) power input and are housed in a low profile 0.050" ceramic package with solder plated leads for good heat dissipation and excellent solderability. Available off-the-shelf.



#### DC TO 8GHz MMIC AMPLIFIER HAS HIGH RELIABILITY

The GAL-21 is a newly developed monolithic surface mount amplifier from Mini-Circuits for the broad DC to 8GHz band. When operated at 2GHz/25°C, the unit typically delivers high 13.1dB gain (±0.6dB flat) and maximum output power of 12.6dBm typical (at 1dB comp.). These low cost 50 ohm amplifiers are housed in an industry standard SOT-89 package for excellent heat dissipation and display low 128°C/W (typ, θjc) thermal resistance. Available from stock.



This level 17 (LO) SYM-36H surface mount frequency mixer from Mini-Circuits targets PCS and ISM applications within 1500 to 3600MHz. Typically at center band, the mixer exhibits high 25dBm IP3 and low 6.3dB conversion loss. Bandwide, L-R isolation is 30dB, and L-I isolation is 34dB typical. Ruggedly constructed in a low cost plastic package with solder plated leads and covered by a 5 year Ultra-Rel® reliability guarantee.





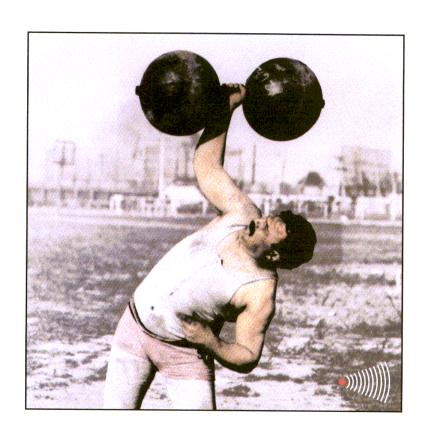
#### 1350 TO 2000MHz VCO WORKS FROM 12V SUPPLY

Mini-Circuits new ROS-2000 voltage controlled oscillator features 1350MHz to 2000MHz broad band linear tuning from a miniature 0.5"x0.5"x0.18" industry standard surface mount package. The VCO delivers low -100dBc/Hz SSB phase noise typical at 10kHz offset, good 30-50MHz/V typical tuning sensitivity, and 0.5 to 20V minimum to maximum tuning voltage. Typical power output is +7dBm with output suitable for LO drive to mixers. Affordably priced.



#### 13dB "DO-IT-YOURSELF" COUPLER DELIVERS COST SAVINGS

The patented TCD-13-4 from Mini-Circuits needs only a commercially available 50 ohm external chip resistor, and a complete 5 to 1000MHz directional coupler is realized. Designed to lower costs through automated manufacturing, this rugged coupler provides 13.0dB±0.5dB nominal coupling (±0.6dB max. flatness) with 0.7dB mainline loss and 18dB directivity typical midband. The 50/75 ohm "do-it-yourself" TCD family contains 9 units with 9 to 20dB coupling for 5 to 1000MHz.






CIRCLE READER SERVICE CARD

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For quick access to product information see MINI-CIRCUITS CATALOG & WEB SITE The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

## STRENGT



REPUTATION

True **strength** surpasses mere muscle.

Bulking up a business involves repetition — repeatedly proving you can handle an incredible workload with ease. At RFMD, we routinely master weighty problems like integrated function, power consumption, limited board space and complex design.

Our **reputation** as an industry **heavyweight** is built on **proven performance**, **quality** and **innovation**.

Trust the company you can rely on to deliver the components you can depend on – turn to RFMD.

We'll never let you down.

**STRENGTH** – it sets us apart.



Proprietary, State-Of-The-Art RF Integrated Circuits<sup>SM</sup>

7628 Thorndike Road Greensboro, NC 27409-9421

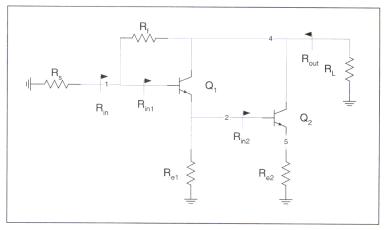
Phone 336.664.1233 Fax 336.931.7454

Mention strength when contacting us.



#### Wideband Gain Block Amplifier **Design Techniques**

Here is a thorough review of the device design requirements for a general-purpose amplifier RFIC


#### By Chris Arnott RF Micro Devices

ideband highly linear gain amplifiers becoming a popular, costeffective alternative to the discrete designs presently used in many systems. These wideband gain blocks offer highly repeatable linear fixed gains with internally matched impedances and minimal external component count, which reduces manufacturing costs.

Replacing existing discrete designs with gain block amplifiers further reduces manufacturing costs by decreasing tuning time during manufacture, as well as reducing initial system design time. System designs can be simplified

and completed faster. This reduction in time-tomarket can remove costs from product development (and increase profit margins), simply by using gain block amplifiers.

The RF3348 is the first product in RF Micro Devices' RF3340 gain block amplifier series. This series offers low cost gain blocks with performance that exceeds that of previously available units. The RF3348 amplifier is designed to replace more expensive and less reliable discrete amplifiers and permit better distortion performance for a given DC power consumption. This article addresses the methods used to design and manufacture the RF3348 wideband linear amplifier. The amplifier is realized with a simple Darlington amplifier topology. Techniques used in the design of the amplifier include minimization of small signal nonlinear effects while achieving maximum linear amplification, gain flatness and input/output return loss.

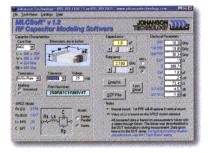


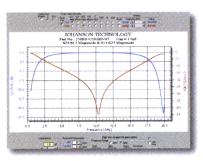
▲ Figure 1. Simplified Darlington amplifier circuit used for analysis of circuit behavior.

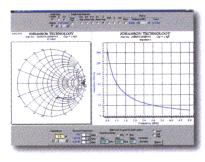
#### Amplifier nonlinear design issues

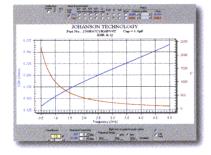
Four distinct distortion-causing mechanisms in realistic amplifiers contribute to signal degradation, voltage compliance and nonlinear device parameters. The device parameters are nonlinear transconductance, nonlinear base-collector capacitance and nonlinear output resistance. These sources of distortion must be addressed with either design techniques or appropriate use of integrated device technology.

• Voltage compliance. Power supply level and circuit bias points within the amplifier must be sufficient to allow linear voltage swings for maximum input power drive levels. Overdriving the amplifier to levels exceeding bias conditions will cause voltage clipping in the output signal. Voltage clipping is the result of transistors being driven to "turn-off" during maximum power input signals. The


## Johanson high frequency multilayer ceramic capacitors





## Proven Performance!




Prove it to yourself! Just surf over to our web site at www.johansontechnology.com and download your free copy of MLCSoft®, an industry leading RF modeling and evaluation software. Using MLCSoft® you'll be able to chart critical performance parameters such as Quality Factor, Equivalent Series Resistance and S-parameters for Johansons entire range of high frequency multilayer ceramic chip capacitors from 1MHz through 20 GHz. After you've found the high frequency capacitor that's right for your design, order an engineering kit for in-circuit evaluation.













#### WIDEBAND AMPLIFIERS

power supply level must be selected to provide adequate bias and voltage headroom for maximum output power levels. Typically, an RF choke provides amplifier bias by directly connecting the output to the DC level of the power supply. This bias configuration allows the output signal to swing around the average DC level of the power supply. Large negative output swings act as a decreasing power supply and tend to turn the amplifier off, which causes voltage clipping.

- Nonlinear transconductance. The exponential I-V characteristics of BJT devices inherently exhibit nonlinear operation when operated in an open loop state. Using emitter degeneration and shunt feedback with adequate bias current can permit the amplifier to obtain very good linear operation.
- Nonlinear amplifier input/output impedance. Nonlinear variations in amplifier input/output impedance produce distortion in the output signal. The open loop output impedance of the amplifier is ideally large and constant, but in reality a dependence on bias current and device physical parameters exists. This dependency causes nonlinear loading of the output, which distorts the output signal. In addition, parasitic base-to-collector capacitance exhibits nonlinear characteristics, which distorts the output signal. RF Micro Devices' GaAs HBT technology exhibits excellent input/output impedance due to very high output impedance and almost constant base-to-collector capacitance versus input voltage.
- Minimizing nonlinear effects by design. The RF3348 was implemented with a single-ended Darlington feedback amplifier configuration with an emitter degeneration resistor, as shown in Figure 1. The main advantages of the Darlington topology are high, nearly constant gain versus frequency response and good input/output return loss. Feedback resistors  $R_s$ ,  $R_e$  and  $R_F$  are used to determine closed loop gain while fixing the input and output impedance to 50 ohms. A properly biased Darlington amplifier circuit minimizes nonlinear device effects with negative feedback.

#### Small signal amplifier design

Classical feedback amplifier methods of loop transmission analysis [1] are used to analyze the resistor shown in Figure 1. The loop transmission of the amplifier is found by breaking the feedback loop at the base of  $Q_1$  in Figure 1, applying a test disturbance signal to the base and monitoring the return signal. The loop transmission is the ratio of return signal to test signal. The approximate mid-band loop transmission of the amplifier, using Figure 1, is given by

$$T_{mid} \approx -\left(\frac{R_1 \| R_{in_2}}{R_1 \| R_{in_2} + r_{e_1}}\right) \left(\frac{R_L \| r_o \| R_{F2}}{R_e + r_{e_2}}\right) \left(\frac{R_{in_1}}{R_{in_1} + R_f}\right)$$
(1)

where  $R_L$  is the load resistance,  $r_o$  is the open loop output impedance;  $r_{e1}$  is the dynamic emitter resistance of  $Q_1$ ;  $r_{e2}$  is the dynamic emitter resistance of  $Q_2$ ; and  $R_{in1}$  and  $R_{in2}$  are the impedance looking into the bases of  $Q_1$  and  $Q_2$ . The ideal closed loop gain is the ratio of the feedback resistor and source impedance as given by

$$A_{CL_{ideal}} = \frac{-R_F}{R_S} \tag{2}$$

The actual amplifier closed loop gain at mid-band frequencies is given by

$$A_{CL} = A_{CL_{ideal}} \times \frac{-T_{mid}}{1 - T_{mid}} \tag{3}$$

where  $T_{mid}$  is the mid-band loop transmission or loop gain of the amplifier.

The characteristics of Equation (3) show the tendency of negative feedback to force the closed loop gain to approach its ideal value for large values of loop gain. This forcing effect can resist amplifier non-linear output fluctuations if  $T_{mid} >> 1$  and amplifier operation within voltage compliance. In multiple GHz-wide bandwidth amplifiers, large loop gains are not possible because of possible instabilities. Wideband gain block amplifier designs achieve small signal linearity performance by combining both minimization of device nonlinear effects and negative feedback correction.

Amplifier input/output impedance at mid-band frequencies is mainly determined by amplifier parameters  $R_f$ ,  $R_{e2}$  and  $R_s$ . Assuming amplifier input and output loading effects are negligible,  $R_{INOL}$  is approximately equal to  $R_{OUTOL}$ . The approximately equal value of  $R_{IN}$  and  $R_{OUTOL}$  is  $R_f + R_s$ . Using Blackman's theorem, the input impedance of the amplifier at mid-band frequencies is given by

$$R_{IN} = R_{IN_{OL}} \times \frac{1}{1 + |T_{mid}|} \tag{4}$$

The mid-band output impedance is given by

$$R_{OUT} = R_{OUT_{OL}} \times \frac{1}{1 + |T_{mid}|} \tag{5}$$

Negative feedback reduces open loop input/output impedance, as seen in Equations (3) and (4). The same forcing effect that forces the gain of the amplifier to approach its ideal value causes this reduction in amplifier open-loop input/output impedance. This effect is accomplished through voltage sampling at the output and information processing by current summation at the input. Negative feedback thus tends to idealize the input impedance presented to the input current signal while making the amplifier's output appear as an ideal

### LOW COST FAST SWITCHING SYNTHESIZERS



**SPECIFICATIONS** 

MODEL Frequency

Frequency step size

Tuning range

Switching speed

Output power variation

Output power

In band spurs

Harmonics

Phase noise

Frequency

Input power

External reference

Frequency control

DC power requirement

Operating temperature

Reference

**SLS SERIES** 

200 kHz to 10 MHz

Up to half octave

1-15 GHz

500 us\*

10 dBm min.

±2 dB min.

70 dBc min.

20 dBc

See graph

5/10 MHz

3 dBm ±3 dB

BCD or binary

5.2 volts, 500 mA -10 to +60°C

5" x 6.5" x 0.6"

+15 or +12 volts, 200 mA

Internal or external

- Operating Bands
   From 1 15 GHz
- Ideal for Wireless Applications

#### (c) 27 (c) N/S

- 12 Volt Operation
- Optimized Bandwidth/Tuning Speed Combination

TYPICAL PHASE NOISE AT 2 GHz (2 MHz Step Size)

| 70 -70 -80 -90 -90 -90 -90 -90 -110 -120 -120 -120 -120 -120 -120 -12 |      |               |     |          |   | 3 80 5   |
|-----------------------------------------------------------------------|------|---------------|-----|----------|---|----------|
| -90<br>50-100<br>H-110<br>100 1K 10K 10C                              |      |               |     |          |   |          |
| D-100<br>H-110<br>E-120                                               |      | $\rightarrow$ |     | <b>-</b> | ` | j<br>-90 |
| H-110<br>L-120                                                        |      |               |     |          |   | -100     |
| 1-120 1K 10K 10K                                                      |      |               |     |          |   | -110     |
|                                                                       | OK 1 | 4001          | 101 |          |   | -120     |
| FREQUENCY OFFSET FROM CARR                                            |      |               |     |          |   | 100      |



For additional information, please contact Stan Eisenmesser at (631) 439-9152 or seisenmesser@miteq.com

\* Acquire time depends on step size (low as 25 μs).

www.miteq.com



Hauppauge, NY 11788 TEL.: (631) 436-7400 FAX: (631) 436-9219/436-7430

#### WIDEBAND AMPLIFIERS

voltage source. The transformation of the amplifier's input and output into an idealized impedance and voltage source fixes the input/output impedance and minimizes effects of Beta variation, reactive loading and other non-linear variations for frequencies approaching the amplifier's 3-dB bandwidth. In contrast, low bandwidth op-amp type circuits with very high loop gain lower the input/output

$$T(f) \approx -\frac{\left|T_{mid}\right|\left(1 + \frac{j \times f \times \tau_{z_1}}{2 \times \pi}\right)\left(1 + \frac{j \times f \times \tau_{z_2}}{2 \times \pi}\right)}{\left(1 + \frac{j \times f}{2 \times \pi \times f_{t_1}}\right)\left(1 + \frac{j \times f}{2 \times \pi \times f_{t_2}}\right)\left(1 + \frac{j \times f \times \tau_{in}}{2 \times \pi}\right)\left(1 + \frac{j \times f \times \tau_{out}}{2 \times \pi}\right)}$$

▲ Equation (9).

impedances to very small values and approach the ideal gain with high accuracy. Wideband circuits use these feedback principles to achieve desired gain and input/output return loss by adjusting the loop gain while maintaining stability against oscillations, near constant gain, and input/output return loss with process parameter variation. This loop gain adjustment is analogous to adding input and output ideal series resistance to an amplifier with very high loop gain. Therefore, wideband gain blocks can be realized with highly precise input/output impedance matching.

Three non-linear, small signal terms,  $r_{e1}$ ,  $r_{e2}$  and  $r_o$ , are present in the loop gain Equation (1). These nonlinear terms cause output nonlinearity when the amplifier is operating with small input signals. Sensitivity analysis assuming small signal operation shows the effects of these nonlinear terms on loop gain [2]. Sensitivity of the loop transmission with respect to  $r_{e1}$  is given by

$$S_{r_{e_{1}}}^{T_{mid}} \approx \left(\frac{r_{e_{1}}}{R_{e_{1}} \|R_{in_{2}} + r_{e_{1}}}\right) \left(\frac{R_{e_{2}} + r_{e_{2}}}{R_{L} \|r_{o}\| R_{f}}\right) \left(\frac{R_{in_{1}} + R_{f}}{R_{in_{1}}}\right)$$
(6)

with respect to  $r_{e2}$  by

$$S_{r_{e_2}}^{T_{mid}} \approx \left(\frac{r_{e_2}}{R_{e_2} + r_{e_2}}\right) \left(\frac{R_{e_1} \|R_{in_1} + r_{e_1}}{R_{e_1} \|R_{in_1}}\right) \left(\frac{R_{in_1} + R_f}{R_{in_1}}\right) \tag{7}$$

and with respect to  $r_o$  by

$$S_{r_o}^{T_{mid}} \approx \left(\frac{r_o}{R_L \|R_f + r_o}\right) \left(\frac{R_{e_1} \|R_{in_1} + r_{e_1}}{R_{e_1} \|R_{in_1}}\right) \left(\frac{R_{in_1} + R_f}{R_{in_1}}\right) \left(R_{e_2} + r_{e_2}\right) \quad (8)$$

Equation (6) suggests the sensitivity of the loop transmission, with respect to  $r_{e1}$ , can be minimized if  $R_{e1}$  |  $R_{in2} >> r_{e1}$ . Since  $R_{e1}$  biases transistors  $Q_1$  and  $Q_2$ , its value should be large compared to  $r_{e1}$ . Equation (7) suggests the sensitivity of the loop transmission, with respect to  $r_{e2}$ , can be very small if  $R_{e2} >> r_{e2}$ . Small  $r_{e2}$  is usually the case because large bias current is required in  $Q_2$  to deliver maximum output power. Since  $R_{e2}$  approximately determines amplifier open loop gain and greatly effects noise figure, it should be made as small as

possible. These criteria on  $R_{e2}$  suggest reducing  $r_{e2}$  with large bias current in the output-driving transistor  $Q_2$  to improve the linear performance. Loop gain sensitivity, with respect to  $r_o$ , shows linearity is improved if  $R_L \mid \mid R_f << r_o$ , as shown in Equation (8). This is the case with very high output impedance RF Micro Devices GaAs HBT devices. Therefore, maximizing  $R_{e1}$  and increasing  $Q_2$  bias current with the use of RF Micro Devices' GaAs HBT devices in wideband Darlington topology amplifiers will optimize small signal linear performance.

#### Small signal amplifier frequency response

An approximate expression for frequency response of the loop gain can be found using the time constant method [2]. Once the frequency-dependent expression for loop gain is found, the closed loop amplifier response is simply obtained by substitution for  $T_{mid}$  in Equation (3). The time constant method consists of calculating the time constants at each node within the amplifier, including the frequency limitations of the active devices,  $f_T$ . These time constants represent poles and zeros in loop gain frequency response. Transistor unity current gain frequencies are included in the analysis as poles and combine with the time constants for the approximate frequency-dependent loop gain expression is given by Equation (9) above, where  $f_{T1}$  and  $f_{T2}$  are poles associated with devices  $Q_1$  and  $Q_2$ ,  $t_{in}$  and  $t_{out}$  are time constants associated with the amplifier's input/output, and  $f_{z1}$  and  $f_{z2}$  are locations of parasitic zeros. The remaining poles associated with nodes 2 and 5 can be neglected because the impedance at these nodes is very small and resulting poles are located at frequencies beyond the loop gain unity gain frequency.

The zero described by  $f_{z1}$  in Equation (8) is due to the parallel connection between the feedback resistor  $R_f$  and parasitic base to collector capacitance of transistor  $Q_1$ . Zero and  $f_{z2}$  in Equation (8) result from parasitic series inductance and degeneration resistor  $R_{e2}$ . Dominant poles in the frequency response are due to both input and output time constants, which are at a much lower frequency compared to the unity current gain frequencies of the transistors. Large parasitic shunt capacitance increases these input/output time constants. Also, these dominant poles have approximately equal frequency locations since the circuit has equal source/load imped-

## The Evolution of Broadband



#### Does Your Antenna Adapt to a Changing Environment?

It does now. Paratek Microwave, Inc. introduces DRWiN™ (Dynamically Reconfigurable Wireless Networks) antennas that adapt to provide flexible and scalable solutions in an ever-changing communications landscape. Paratek's debut DRWiN™ product is the first low-cost passive phased array antenna. This DRWiN™ antenna electronically scans in one dimension, providing rapid beam hopping to a high frequency broadband wireless network subscriber base.

#### DRWiN™ Antennas Enable Broadband Flexibility and Scalability

- Increased capacity
- Increased data rates

- Software reconfigurable networks
- Interference discrimination

Paratek's DRWiN™ antennas are the natural selection in the evolution of broadband.



Email inquiries to drwin@paratek.com
1-866-PARATEK • 443-259-0140
www.paratek.com

Paratek Microwave, Inc. - The Tunable Wireless Company

#### WIDEBAND AMPLIFIERS

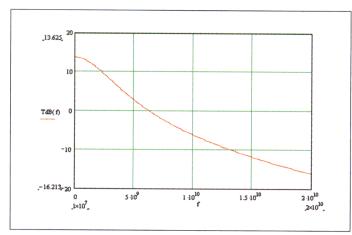



Figure 2(a). Darlington amplifier loop gain plot.

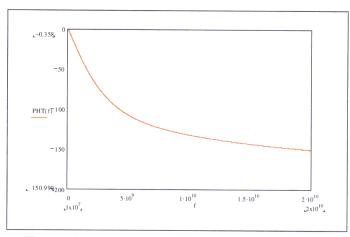



Figure 2(b). Darlington amplifier loop gain phase plot.

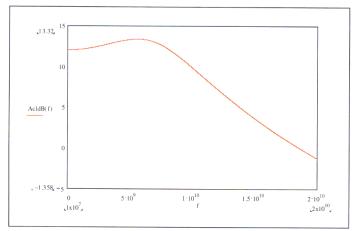



Figure 3. Darlington amplifier closed loop gain dB magnitude plot.

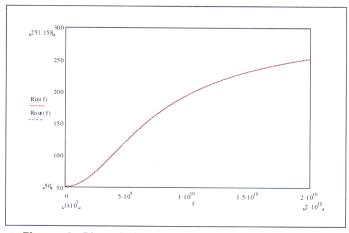
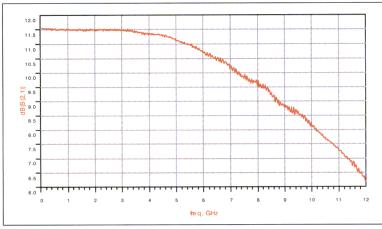



Figure 4. Plot of the Darlington amplifier input/output impedance vs. frequency.


ance and approximately equal parasitic shunt capacitance. Therefore, the loop gain expression has a dominant double pole, which causes excessive phase shift and results in low amplifier phase margin. The zeros at  $f_{z1}$  and  $f_{z2}$  tend to neutralize the poles at  $f_{T1}$  and  $f_{T2}$  by decreasing loop gain phase shift. Stability against oscillations is secured because the low mid-band loop gain value will reach its unity gain frequency before loop gain phase shift reaches 180 degrees, as shown in Figures 2(a) and 2(b). This results in a stable design that exhibits the gain peaking frequency response as shown in Figure 3.

The amplifier-closed loop gain frequency response exhibits a very flat response with 2 dB peaking and a 3 dB bandwidth of 9.8 GHz. Equation (2) correctly predicts the gain roll off seen in Figure 3 and shows that this decrease in closed loop gain approaches zero as T approaches zero. Adding series resistance to the base of  $Q_1$  further reduces loop gain phase shift. The value of this series resistance is found through circuit simulations. This simple solution improves phase margin and

reduces frequency peaking by effectively adding a low pass filter to the amplifier's frequency response.

The maximum stable bandwidth of the amplifier is limited by the unity current gain frequencies of devices  $Q_1$  and  $Q_2$ . These device-induced poles in Equation (9) are essentially fixed depending on bias conditions. Attempts to improve bandwidth by decreasing input/output time constants will produce amplifier instabilities when the dominant double pole frequency approaches  $f_{T1}$  and  $f_{T2}$ . Bandwidth can be slightly improved with careful choice of package type and PCB layout, but care must be taken in order to maintain amplifier stability. RF Micro Devices' GaAs HBT technology possesses an  $f_T$  approaching 30 GHz, which is sufficient for this design.

The frequency response of the input impedance is found by substituting Equation (9) into Equation (3) and Equation (4) for the output impedance. The input/output impedance is set to 50 ohms by the loop gain (very precisely for low frequencies), but increases with decreasing loop gain, as shown in Figure 4. This



▲ Figure 5. Measured amplifier gain, S<sub>21</sub>.

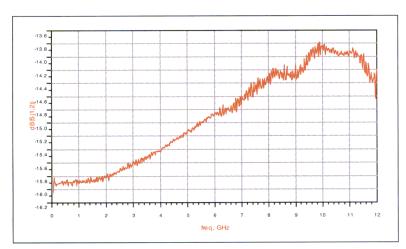
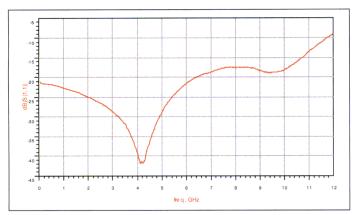




Figure 6. Measured amplifier reverse gain, S<sub>12</sub>.



▲ Figure 7. Measured input reflection coefficient, S₁₁.

shows how effectively negative feedback fixes the input/output impedance for frequencies within the 3 dB bandwidth of the loop gain. Equations (3) and (4) show that this increase in impedance is expected because  $R_{in}/R_{out}$  approaches  $R_{INOI}/R_{OUTOL}$  as T approaches zero

with increasing frequency, as shown in Figure 2. Amplifier input/output impedance is more sensitive to changes in loop gain compared to closed loop gain due to the inversely proportional loop gain relationship. The closed loop gain of the amplifier is less sensitive because the loop gain correction factor in Equation (2) tends to ratio to unity.

#### Large signal amplifier considerations

The Darlington amplifier operates in a Class A state. This operating state simplifies amplifier design since constant power is dissipated regardless of input power level. Usually these gain blocks are operated under small signal conditions achieving highly linear amplification. This small signal operation places more importance on output third order linearity instead of maximum output power. Designing the amplifier for output third order linearity allows the assumption of amplifier operation at maximum output levels 10 dB less than the 1 dB compression point. If we assume that the output third order intercept point is 10 dB higher than the 1 dB compression point, then determination of maximum amplifier output power is achieved. We also assume that the maximum deliverable output power from the amplifier is equal to maximum output power of transistor  $Q_2$ . Therefore, the bias current in  $Q_2$  must be set at a sufficient level to deliver maximum required output power.

This current can be easily calculated from the specified output 1 dB compression power into the source impedance. This calculated current is the ideal minimum bias current that will deliver max-

imum specified output power. The final  $Q_2$  bias current will be slightly larger than the calculated value and is easily found with nonlinear circuit simulations. Transistor  $Q_1$  must be biased with sufficient current to drive the base current of  $Q_2$  and voltage swing on  $R_1$ . This current is small compared to the current in  $Q_2$ , but must be large enough to drive the frequency dependant base current of  $Q_2$  for the amplifier's bandwidth. The final value of the bias current for  $Q_1$  is easily found with nonlinear circuit simulations of output 1 dB compression point versus frequency.

The voltage compliance of the amplifier is evaluated to ensure sufficient voltage head room within the amplifier and eliminate distortion caused by voltage clipping. This can be challenging considering the trend toward decreasing supply voltages. This problem is made worse because the amplifier drives output power directly into system impedance, which causes large output voltage swings that limit the maximum deliverable amplifier output power. Connecting the collectors of  $Q_1$  and  $Q_2$  to the output allows large negative output voltage swings

#### WIDEBAND AMPLIFIERS

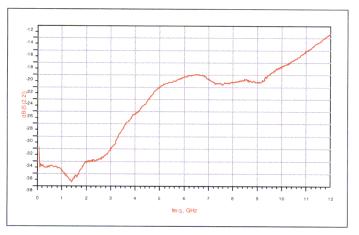



Figure 8. Measured output reflection coefficient, S<sub>22</sub>.

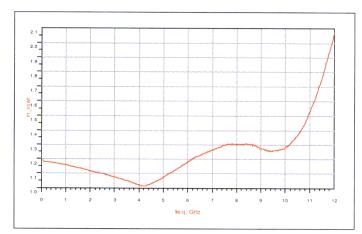



Figure 9. Measured input VSWR.

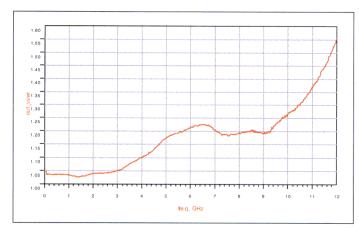



Figure 10. Measured output VSWR.

to decrease the collector voltage of  $Q_2$  below its saturation point, which causes severe distortion. Increasing the power supply voltage or decreasing the bias voltage of  $Q_1$  can improve this distortion mechanism. Performing time domain simulations of the circuit and

observing the collector current of  $Q_1$  versus time with increasing output power easily detects this effect during large negative output swings. When the collector current of  $Q_1$  approaches zero, the base current of  $Q_2$  approaches zero and turns off the amplifier. The design of the amplifier must include evaluation and compensation of this  $Q_1$  saturation effect to ensure amplifier output power drive capability.

The RF3348 was designed using these general guidelines, which provide a means to calculate the initial values of  $R_{e1}$ ,  $R_{e2}$ ,  $R_f$  and bias currents. The limitations of these small signal approximations are the inabilities to predict large signal and high frequency device effects accurately. Modern analog circuit simulators accurately predict these effects with sophisticated small and large signal models. All final component and bias values were found using the nonlinear analog circuit simulator Advanced Design System by Agilent Technologies.

#### Measured results

The RF3348 was evaluated by measuring the amplifier's S-parameters, NF, output 1 dB compression point and output third order intercept point. The scattering parameters of the amplifier were measured using high frequency input/output bias tees and test fixture specifically designed for the ceramic Micro-X package as shown in Figures 5 through 13. The use of this test fixture ensures test data will not include degradation due high frequency PCB and passive component limitations. A frequency range of 50 MHz to 12 GHz with 401 points was used for S-parameter measurements with a source power level of -10 dBm.  $S_{21}$ , plotted in Figure 5, shows very good amplifier gain flatness, as predicted by Equation (2). The added series resistance with the base of  $Q_1$  has removed the expected gain peaking in the frequency response. The measured 3 dB bandwidth is 9.5 GHz, which agrees very well with analytical 3 dB bandwidth shown in Figure 3. The reverse gain  $S_{12}$  is very flat over amplifier bandwidth with typical magnitude values 5 dB less than the forward gain, as shown in Figure 6, which is an indication of amplifier stability against oscillations.

Measured input/output reflection coefficients  $S_{11}$  and  $S_{22}$  are plotted in Figures 7 and 8. The measured input return loss of the amplifier is better than 18 dB within the 3 dB bandwidth with a maximum of 42 dB around 4.1 GHz, as shown in Figure 7. This maximum is caused by the large input capacitance of  $Q_1$  resonating with stray input inductance. The measured output return loss is better than 20 dB for entire amplifier 3 dB bandwidth and better than 32 dB up 3 GHz, as shown in Figure 8. Input and output VSWR is better than 1.3 and 1.25 over the entire 3 dB bandwidth, as shown in Figures 9 and 10. The output return loss is more consistent with the analytical approximation given by Equation (4). This results from the very high output



Low Power, Low Noise YIG-Based Synthesizers





Micro Lambda, Inc. a leader in the development of next-generation YIG devices now offers YIG-Based Frequency Synthesizers covering the 2-12 GHz frequency range. Designed specifically for Digital Radio ODU's and harsh commercial environments, these synthesizers offer excellent integrated phase noise characteristics over carrier offset frequencies from 10 kHz to 10 MHz.

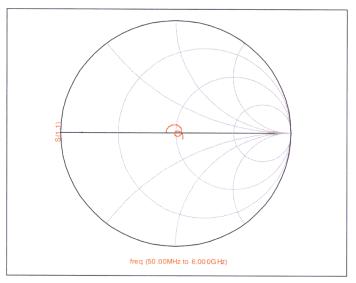
Tunable bandwidths of either 2 GHz or 3 GHz are available as standard products. This results in fewer numbers of synthesized sources required for a variety of Digital Radio frequency plans. Millimeter-Wave frequencies can easily be obtained using frequency multipliers to obtain output frequencies between 24 GHz through 44 GHz.

Applications include QAM and QPSK modulated Digital Radio's and a multitude of general purpose applications.

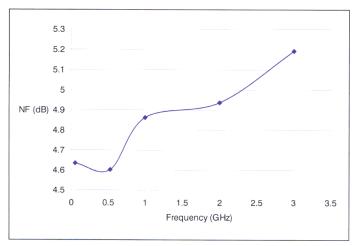
#### **FEATURES**

- 2 12 GHz Frequency Coverage
- Excellent Integrated Phase Noise Characteristics
- Compact Size
- 3-Line Serial Interface
- Low Prime Power
- 500 kHz Step Size
- Internal Memory (last frequency programmed - recall)

#### **MLSL-SERIES SYNTHESIZERS**


This series of synthesizers utilize an external 1 to 50 MHz crystal reference oscillator to generate tunable frequencies covering the 2 - 12 GHz range. Output power levels of +12 dBm to +15 dBm are offered depending on frequency, with a standard tuning step size of 500 kHz. Input tuning commands are via 3-Line Serial interface. The size of these compact units is 2.5" x 2.5" x 1.0" without mounting plate and consume less than 6 watts of prime power. The units have an internal memory capability which "recalls" the last frequency programmed when the prime power is removed and reapplied. Standard models include 2-4 GHz, 4-6 GHz, 5-7 GHz, 7-9 GHz and 9-11 GHz. Specialized frequency ranges are easily implemented utilizing the versatile synthesizer architecture.








#### WIDEBAND AMPLIFIERS



▲ Figure 11. S<sub>11</sub> Smith chart plot.



▲ Figure 13. Measured amplifier noise figure.

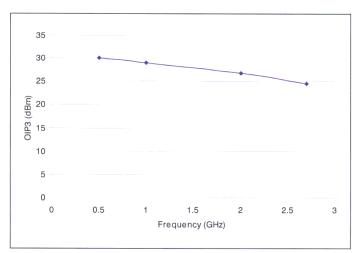
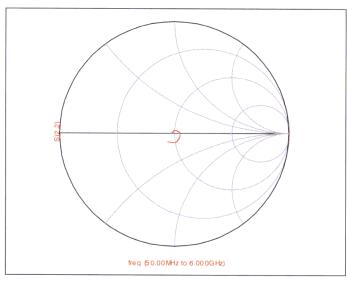




Figure 15. Measured amplifier output third order intercept point.



▲ Figure 12. S<sub>22</sub> Smith chart plot.

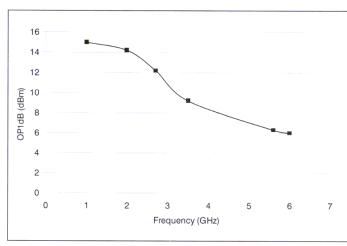



Figure 14. Measured amplifier output 1 dB compression point.

GaAs HBT device output impedance that does not significantly load the closed loop output impedance. This excellent mid-band input/output return loss performance shows how effectively negative feedback can hold the input/output impedance to a near constant value of 50 ohms, as shown in Figures 10 and 11. Only at high frequencies does the input/output return loss begin to decrease with decreasing loop gain, as predicted by Equations (3) and (4). Amplifier noise figure was measured at 1 GHz to 3 GHz, as shown in Figure 12. Noise figure results show the 1 GHz noise figure is 4.7 dB and increases 0.3 dB to 5 dB at 3 GHz, which is consistent with beta roll off of input transistor  $Q_1$ .

Amplifier large signal parameters output 1 dB compression point was measured at frequencies 1 GHz to 6 GHz, as shown in Figure 15. Results show the output 1 dB compression point is 15 dBm at 1 GHz and 9 dBm at

6 GHz with a 2 dB decrease from 1 GHz to 2.7 GHz. These results show the effects of  $Q_2$  beta and loop gain roll off for frequencies greater than 3 GHz. The output compression point remains nearly constant up to 3 GHz then rolls off due to decreasing loop gain. The output third order intercept point was measured using the two-tone method [3] at 1 GHz, 2 and 3 GHz, as shown in Figure Aesults show the amplifier output third order intercept point rolls to 3 GHz.

#### Conclusion

This article has presented simple analysis and design techniques for wideband Darlington negative feedback amplifier design. A high performance wideband gain block amplifier was successfully realized by utilizing these proposed design techniques. Results show that the simple mid-band approximations used to predict amplifier performance gives very good correlation with high-frequency measurements. This emphasizes how effectively design properties of negative feedback and optimum device technology can realize high performance wideband gain block amplifiers. These realized amplifiers have very good small signal, noise and large signal performance. Results showed that measured amplifier data meets all required specifications.

#### **Acknowledgments**

The author greatly appreciates the efforts of Bruce Schmukler, Greg Schramm, Jennifier Ameling and Bryan Sykes in reviewing this paper. The author also thanks Fred Overcashier, John Mckee and Brian White for providing product characterization.

#### References

1. J.F. Pierce, Applied Electronics, TechBooks, 1992.

2. C.L. Phillips, Feedback Control Systems, Upper Saddle River: Prentice-Hall, 1996.

3. T.S. Laverghetta, *Handbook of Microwave Testing*, Boston: Artech House, 1981.

#### **Author information**

Chris Arnott received a BSEE in 1998 and an MSEE in 1999, from

the University of Tennessee at Knoxville. His professional interests are analog and RF circuit design using silicon and GaAs IC technologies. He is a design engineer at RF Micro Devices, designing dual band multimode power amplifier modules for cellular handsets. He may be reached via e-mail at carnott@rfmd.com.

#### Let Venkel help you cut down your ...

- Chip capacitors
- Chip resistors
- Chip resistor arrays
- Chip inductors
- Chip thermistors
- Engineering kits

... space requirements: Venkel's new 0201 chip resistors and ceramic chip capacitors are best suited to meet minimal space requirements that today's compact and high-density designs demand.

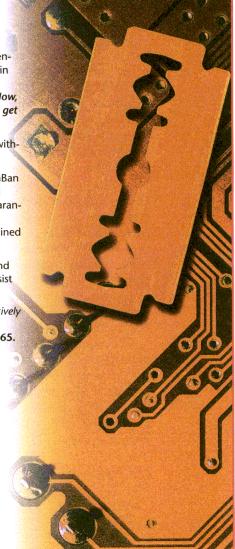
... delivery time: with our extensive inventory and one of the shortest lead times in the industry, we can ship most orders within 24 hours in full or partial reels. Now, you can order until 5 pm (CST) and still get same day shipping.

... price tag: get factory direct pricing without losing the flexibility of distribution.

... production bottlenecks: with our KanBan program – part of Venkel's Value Added Services (VAS) program, you have a guaranteed inventory of critical items that are released by you without any predetermined shipping dates.

... order processing time: our friendly and knowledgeable sales staff is ready to assist you at every step of the way.

To learn more about how Venkel is "Actively Redefining Surface Mount Passives," visit www.venkel.com or call 1-800-950-8365.




#### VENKEL LTD.

Actively Redefining Surface Mount Passives™

www.venkel.com e-mail: sales@venkel.com

4807 Spicewood Springs Rd., Bldg. 3 Austin, Texas 78759 (512) 794-0081 • Fax (512) 794-0087



## Narrow Band Ultra Low VSWR Cable Assemblies

This article decribes techniques for obtaining the highest possible performance over a limited frequency range

#### By Bruce Bullard and Eric Houghland Kaman Instrumentation

ccasionally, a customer contacts our company with a request for cables with ultra low VSWR over a narrow bandwidth. This article will discuss methods for achieving the desired VSWR results.

Figure 1 shows a typical VSWR plot for a Kaman Instrumentation  $\mathrm{SiO}_2$  cable connected to a 50-ohm load. In this case, the VSWR highs and lows are primarily a result of discontinuities in the connector. Ideally, the connector is designed for 50 ohms. Also, because of variations of the dielectric constant of materials in the connectors, we see impedance variations. It is primarily these discontinuities and imepdance variations which prevent broadband ultra low VSWR.

A relatively simple model for an  $\mathrm{SiO}_2$  coax cable with imperfect glass seals is shown in Figure 2. The characteristic impedance of the cable is easily controlled and is approximately 50 ohms. Each of the glass seals is 52 ohms.

The input VSWR to this cable is calculated using transmission line theory (SI units are used in all calculations). In this model, we assume the cable is mated to a perfect source and load impedances of  $Z_{S,L}=50$  ohms. The following equations (1) describe the cable

 $l_c$  = length of cable

$$Zin_1 = Zo_g \frac{Z_L + jZo_g \tan(\beta_g l_g)}{Zo_g + jZ_L \tan(\beta_g l_g)}$$

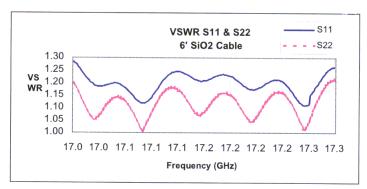
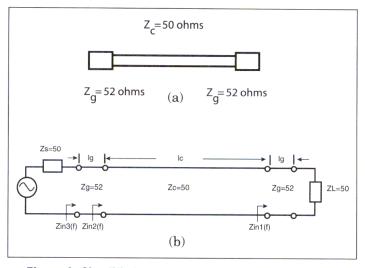
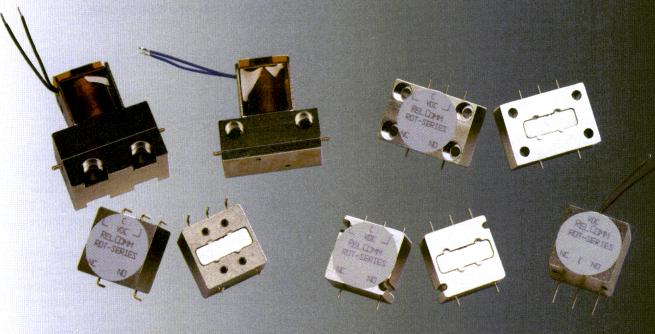



Figure 1. Typical VSWR for a coax cable.





Figure 2. Simplified coax cable model: (a) physical representation; (b) transmission line model.

$$\begin{split} Zin_2 &= Zo_c \frac{Zin_1 + jZo_c \tan(\beta_c l_c)}{Zo_c + jZin_1 \tan(\beta_c l_c)} \\ Zin_3 &= Zo_g \frac{Zin_2 + jZo_g \tan(\beta_g l_g)}{Zo_g + jZin_2 \tan(\beta_g l_g)} \end{split}$$

Design Enhanced Application Specific

## SMT COAXIAL RELAYS

Now Very Affordable



Typical Insertion Loss is 0.07dB at 900MHz, 0.12dB at 1900 MHz

Typical Isolation is 85dB at 900MHz; 75dB at 1900MHz

Designs available up to 8GHz



Circle 53

COMMITMENT TO SERVE THE CHANGING NEEDS
OF THE CUSTOMER BY DESIGN

610 Beam Street, Salisbury, Maryland 21801 Sales Office...410-749-4488; Fax...410-860-2327

 $l_g = \text{length of glass}$ 

$$eta_g = 2\pi f \sqrt{\mu_o \varepsilon_o \varepsilon_g}$$
 $eta_c = 2\pi f \sqrt{\mu_o \varepsilon_o \varepsilon_c} = rac{2\pi}{\lambda_c}$ 
 $eta_{in} = rac{Zin_3 - Z_s}{Zin_2 + Z_s}$ 

$$swr = \frac{1 + |\rho_{in}|}{1 - |\rho_{in}|}$$

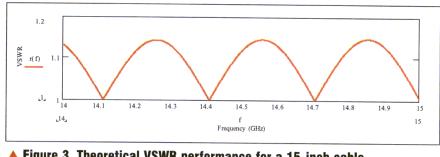



Figure 3. Theoretical VSWR performance for a 15-inch cable.

Most readers are familiar with the periodicity of VSWR over frequency. Figure 1 is a typical example of such periodicity. A quick look at the above equations reveals that the dominant factor in the periodicity is the term which appears as the argument of the tangent function. For a given length of cable, the frequency spacing between successive minima is approximated by

$$\begin{split} \beta_{c1}l_c - \beta_{c2}l_c &= \pi \\ \Delta f &= f_2 - f_1 = \frac{1}{2l_c\sqrt{\mu_o\varepsilon_o\varepsilon_c}} \end{split} \tag{2}$$

Equation (2) is easily rearranged to relate cable length to frequency spacing between nulls

$$l_c = \frac{1}{2\Delta f \sqrt{\mu_o \varepsilon_o \varepsilon_c}} \tag{3}$$

Likewise, for a given frequency, the length of cable required to move between successive minima is approximated by

$$\begin{split} &\beta_c l_{c1} - \beta_c l_{c2} = \pi \\ &\Delta l = l_{c1} - l_{c2} = \frac{1}{2f\sqrt{\mu_o \varepsilon_o \varepsilon_c}} = \frac{\lambda_c}{2} \end{split} \tag{4}$$

These are only first order approximations. Later measurements indicate second order effects influence the frequency spacing.

#### Measured vs. predicted VSWR

A sample cable with estimated parameters was modeled and tested. The frequency of interest is 14.0 to 15.0 GHz. The relevant parameters are

$$\begin{split} \varepsilon_g &= 3.8 &\rightarrow Z_g = 52 \, \text{ohms} \\ \varepsilon_c &= 1.73 &\rightarrow Z_c = 50 \, \text{ohms} \\ l_g &= 0.07 \, \text{inches} \\ l_c &= 15 \, \text{inches} \end{split}$$

The estimated frequency spacing between successive minima is

$$\Delta f = f_2 - f_1 = \frac{1}{2l_c \sqrt{\mu_o \varepsilon_o \varepsilon c}} = 300 \text{ MHz}$$
 (5)

The plot of the theoretical VSWR performance in Figure 3 shows the frequency spacing between minima to be roughly 300 MHz. The measured VSWR data in Figure 4 shows an average frequency spacing of 320 MHz at the low end of the band to 250 MHz at the high end of the band.

As noted above, the frequency spacing between nulls decreases with increasing frequency. This occurs as the second order effects, such as junction capacitances between the bulk cable and the connectors, become significant. The graphs verify the primary factor for determination of the frequency spacing between successive minima is the length of cable separating the connectors.

Equation (4) predicts that the minima can be moved with frequency; that is, a VSWR low can be tuned to a specific frequency by cutting off or adding a fraction of a wavelength of cable. For example, to move the minimum at 14.65 GHz to 14.86 GHz (an arbitrary choice), the technician would need to cut off approximately

$$\Delta l = \frac{\lambda_{14.86}}{2} \left( \frac{14.86 - 14.65}{0.243} \right) = \frac{0.0153}{2} (0.864)$$

$$= 0.0066 m = 0.26 \text{ inches}$$

$$\varepsilon_c = 1.73$$
(6)

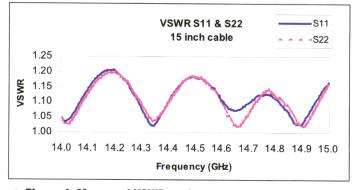



Figure 4. Measured VSWR performance for a 15-inch cable.

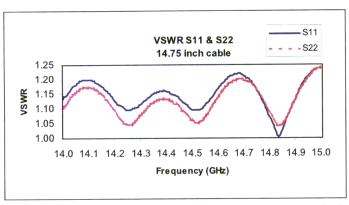



Figure 5. Measured VSWR performance for the 14.75-inch cable example.

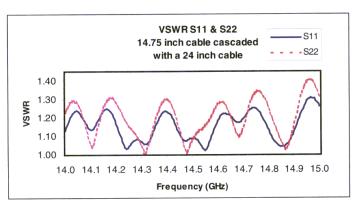
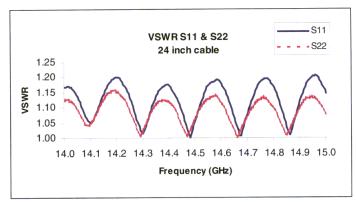



Figure 7. Measured VSWR cascade for the cables shown in Figure 5 and Figure 6.

The frequencies are determined as follows:

- 14.86 GHz is the frequency for the desired minimum.
- 14.65 GHz is the first minimum to the left of the desired minimum.
- 0.243 GHz is the frequency spacing between the null to the left of the desired minima and the null to the right of the minima. Using the actual frequency spacing accounts for second order effects.


Note that the frequency spacing between nulls is inversely proportional to the cable length; that is, as the cable is shortened, the frequency spacing increases. Thus, any given null will move upward in frequency as the cable is shortened.

#### Results

The 15-inch cable was shortened by 0.25 inches. As can been seen in Figure 5, the null at 14.65 GHz has been moved to 14.84 GHz. This not exactly the 14.86 GHz goal, but it is close enough for demonstration.

#### Cascade of two cables

The goal in designing cables with nulls at specific fre-



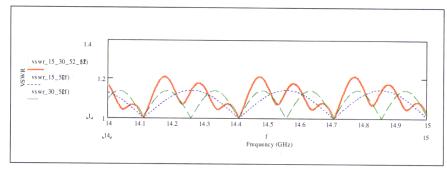
▲ Figure 6. Measured VSWR performance for the 24-inch cable example.

quencies is that the cable is mated to a system with a VSWR which has been minimized at the same frequency. An approximation to such a system is a cascade of two cables with minima at the same frequency. The cable of Figure 5 is mated to a second cable, with a VSWR response shown in Figure 6.

The measured VSWR for the cascade of the two cables is shown in Figure 7. As expected, a VSWR null occurs at roughly 14.85 GHz.

#### Theoretical check

Using Equation (1), a cascade of two cables is modeled and performance comparisons made for variations in the connector impedances. The lengths have been chosen to coincide with nulls at 14.7 GHz. In both cases, the output of Cable 2 is mated to a perfect 50 ohm load, and the input of Cable 1 is mated to a perfect 50 ohm source impedance. (Figures are on the following page.)


#### Case 1 (Figure 8):

| Cable 1:        |   |           | Cable 2:        |   |           |
|-----------------|---|-----------|-----------------|---|-----------|
| $Z_{Connector}$ | = | 52  ohms  | $Z_{Connector}$ | = | 52  ohms  |
| $Z_{Cable}$     |   | 50  ohms  |                 |   | 50 ohms   |
| length          | = | 15 inches |                 | = | 30 inches |

#### Case 2 (Figure 9):

| Cable 1:          |   |           | Cable 2:        |   |           |
|-------------------|---|-----------|-----------------|---|-----------|
| $Z_{Connector}$ = | = | 52 ohms   | $Z_{Connector}$ | = | 48 ohms   |
|                   |   | 50 ohms   |                 |   | 50  ohms  |
|                   | = | 15 inches | length          | = | 30 inches |

In both cases, the individual cables were tuned for nulls at 14.7 GHz. When cascaded together, a null at 14.7 GHz remained. In Case 1, the impedance mismatches in the connectors were identical and resulted in a lower VSWR for the cascade than shown in Case 2, where the connector impedance of Cable 1 differed from that of Cable 2.



▲ Figure 8. Theoretical cascade of two coaxial cables with similar connector impedances, tuned for 14.7 GHz.

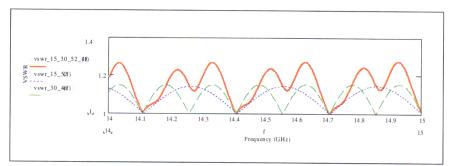



Figure 9. Theoretical cascade of two coaxial cables with dissimilar connector impedances, tuned for 14.7 GHz.

#### **Bandwidth**

We assume that one-sixth of the frequency band between successive minima has VSWR low enough to meet our needs. Therefore, we estimate the maximum bandwidth of ultra low VSWR for a given length of coax cable as:

$$BW = \frac{1}{6}\Delta f = \frac{1}{62l\sqrt{\mu_o\varepsilon_o\varepsilon_c}}$$
 (7)

For the 14.75 inch cable that was built, the estimated bandwidth of ultra low VSWR is 50 MHz, which is in agreement with the measured data. In the case of higher frequency bandwidths, this estimate will have to be reduced as the result of second order effects.

#### Phase matching

Provided cable of similar dielectric is used, phase matching is possible when two or more cables are matched for VSWR. In general, the absolute phase length of the cables will differ by multiples of 180 degrees, n=0,1,2,...; VSWR matching and phase matching to  $\pm 20$  percent is easily achieved.

#### **Practical considerations**

The basic model is a function of the glass beads in the connectors and the length of cable. As the length of the

cable becomes shorter, the glass beads will become more influential. Kaman has found through experience that the model works adequately for cables as short as 4 inches. Bandwidth is inversely proportional to cable length. As such, the longer the cable, the narrower the bandwidth.

The cutoff necessary to move the VSWR minima is dependent on the dielectric constant of the cable. The accuracy of the cutoff will be dependent on how closely the dielectric constant of the cable is known, properly accounting for second order effects.

Second order effects such as junction capacitance are significant at microwave frequencies in the range of 14 to 15 GHz. These effects were compensated for in the determination of cut length by measuring the actual frequency spacing between successive minima about the desired frequency minima.

The actual VSWR performance of cascaded devices will depend on the impedance highs and lows, as well as inductive, and capacitive discontinuities of each device. In the case presented, the cable and connectors were very similar.

#### Conclusion

VSWR in a coax cable is influenced by the characteristic impedance of the cable, and, generally, the characteristic impedance of the connectors. Building cable and connectors which meet the nominal 50-ohm characteristic impedance will assure good VSWR performance. For applications requiring the best possible VSWR over a narrow band, the cable can be cut to length and VSWR minima can be tuned to a particular frequency.

#### Reference

1. D. M. Pozar, *Microwave Engineering*, New York: John Wiley & Sons, 1990.

#### **Author information**

Bruce Bullard received BS and MS degrees in Electrical Engineering from the University of Colorado at Colorado Springs in 1988 and 1991. He is a project engineer with the Microwave Products Group at Kaman Instrumentation, 3450 North Nevada Ave, Colorado Springs, CO, 80907. He may be reached by telephone at 719-442-6957 or by e-mail at bruce\_b37@yahoo.com.

Eric Houghland received a BS degree from the University of Southern Colorado in 1992 and is currently pursing an MBA. He is a manufacturing engineer with the Microwave Products Group at Kaman Instrumentation.

## 2W & 5W DC to 18GHz ATTENUATORS



\$**2995** from **2995** 

Rugged Stainless Steel Construction, High Repeatability, Miniature Size, Low Cost, and Off-The-Shelf Availability are some of the features that make Mini-Circuits "BW" family of precision fixed attenuators stand above the crowd! This extremely broad band DC to 18GHz series is available in 5 watt Type-N and 2&5 watt SMA coaxial designs, each containing 15 models with nominal attenuation values from 1 to 40dB. Built tough to handle 125 watts maximum peak power, these high performance attenuators exhibit excellent temperature stability, 1.15:1 VSWR typical, and cover a wealth of applications including impedance matching, reducing power levels when testing higher power amplifiers, wide band matching during intermodulation measurements, and providing a 2W or 5W termination load for power amplifiers. Call Mini-Circuits today and capture this next generation of performance and value!

Mini-Circuits...we're redefining what VALUE is all about!

| MODELS (Add Prefix BW-) |         |           |         |           |  |  |  |  |
|-------------------------|---------|-----------|---------|-----------|--|--|--|--|
| 2W SMA                  | 5W SMA  | 5W Type-N | Attenua | tion (dB) |  |  |  |  |
| \$29.95                 | \$44.95 | \$54.95   | Nominal | Accuracy* |  |  |  |  |
| S1W2                    | S1W5    | N1W5      | 1       | ±0.40     |  |  |  |  |
| S2W2                    | S2W5    | N2W5      | 2       | ±0.40     |  |  |  |  |
| S3W2                    | S3W5    | N3W5      | 3       | ±0.40     |  |  |  |  |
| S4W2                    | S4W5    | N4W5      | 4       | ±0.40     |  |  |  |  |
| S5W2                    | S5W5    | N5W5      | 5       | ±0.40     |  |  |  |  |
| S6W2                    | S6W5    | N6W5      | 6       | ±0.40     |  |  |  |  |
| S7W2                    | S7W5    | N7W5      | 7       | ±0.60     |  |  |  |  |
| S8W2                    | S8W5    | N8W5      | 8       | ±0.60     |  |  |  |  |
| S9W2                    | S9W5    | N9W5      | 9       | ±0.60     |  |  |  |  |
| S10W2                   | S10W5   | N10W5     | 10      | ±0.60     |  |  |  |  |
| S12W2                   | S12W5   | N12W5     | 12      | ±0.60     |  |  |  |  |
| S15W2                   | S15W5   | N15W5     | 15      | ±0.60     |  |  |  |  |
| S20W2                   | S20W5   | N20W5     | 20      | ±0.60     |  |  |  |  |
| S30W2                   | S30W5   | N30W5     | 30      | ±0.85     |  |  |  |  |
| S40W2                   | S40W5   | N40W5     | 40      | ±0.85     |  |  |  |  |

\*At 25°C includes power and frequency variations up to 12.4GHz. Above 12.4GHz add 0.5dB typ. to accuracy.

ALL MODELS IN STOCK





## MTT Society Prepares For its 2001 International Microwave Symposium in Phoenix

icrowave Week, the largest international conference of microwave engineers, scientists and exhibitors, will be held in Phoenix, AZ, May 20–25, 2001. In addition to the technical program, panel sessions, short courses and workshops are planned. As in previous years, the conference combines the MTT International Microwave Symposium (IMS) with the sessions of Radio Frequency Integrated Circuits (RFICs), as well as the annual Automatic RF Techniques Group (ARFTG) conference.

Microwave Week is accompanied by an exhibition of the latest components, design tools and technologies from numerous companies and vendors in the RF/microwave/wireless industry. This year's symposium and exhibit promise to be the largest ever, according to the organizers, making IMS2001 an event not to be missed.

#### **IMS Technical Program**

IMS workshops and short courses are planned for Sunday and Monday (May 20–21). The regu-

lar sessions begin on Tuesday, May 22, the official start of the MTT-S. This year's technical program will feature 357 papers, arranged in six parallel sessions. The 2001 symposium focuses on the following topics:

- MEMS components and technologies
- High power amplifiers for commercial applications
- Microwave photonics
- Smart antennas
- · Broadband communications systems
- Invited sessions on emerging technologies

New this year are three interactive forum sessions in which 196 papers will be presented and discussed. Panel sessions will be held at lunchtime each day from Monday through Thursday during Microwave Week. The workshop program offers 20 workshops and five short courses on various areas of interest to RF and wireless engineers. Topics for discussion include:

#### 2001 IEEE MTT-S Registration and Attendance Information

Advanced conference registration via fax or e-mail runs through April 27, 2001. The online registration deadline is May 4, 2001. Registration choices include MTT symposium, RFIC symposium, ARFTG conference, panel sessions, workshops, guest programs and the awards banquet. To obtain conference and housing information, directions and schedules, or to register online (telephone registration is not available), please use the following contact information:

For information, call 781-769-9750
To register, go to http://www.mtt-sregistration.com

To register by mail or fax, please use your advance program flyer, or if you did not receive one, you may obtain an electronic version at:

http://www.ims2001.org



# Specialists in Attenuation and RF Switching



#### **Attenuators**

- 50 & 75 Ohm
- Fixed
- Programmable
- Manual Variable

#### **Terminations**

- 50 & 75 Ohm
- 1 Watt to 1500 Watts
- Feedthru

#### Impedance Matching Pads

- 50 to 75 Ohms
- 75 to 50 Ohms

**Detectors** 

Power Dividers/Combiners

RF Coaxial Switches

### Distributed by ...



AMERICAN

ECREESS

MasterCard

3171 S.E. Dominica Terrace Stuart, Florida 34997-5994 **Phone:** (888) 591-4455 or (561) 286-4455

**Fax:** (561) 286-4496

Circle 26



#### PRODUCTS & TECHNOLOGIES

- Low cost fabrication and manufacturing techniques
- Communication theory
- Next generation wireless
- Thermal and material issues at microwave frequencies

Short courses and educational activities will highlight RF MEMS, power amplifiers — Classes A through S, nonlinear measurements, linear power amplifiers and fast method of moments.

#### **IMS Panel Sessions**

Panels sessions are held at lunchtime Monday through Thursday of Microwave Week. Each day one of the following issues will be discussed: RF CMOS for Bluetooth, one chip radio, automotive radar, university-industrial interactions and commercial exploitation of the 92 to 96 GHz spectrum.

#### **Plenary Session**

The plenary session, featuring a keynote address by Dr. Dennis Roberson, Chief Technical Officer of Motorola, and the 2001 Electromagnetics Award, will be held Tuesday, May 22, in the Phoenix Symphony Hall.

#### Radio Frequency Integrated Circuits Symposium (RFIC)

The technical activities for this year's symposium are scheduled for Monday and Tuesday of Microwave Week. The Monday panel session on RF CMOS for Bluetooth will feature discussions on systems architectures and technological barriers to implementing low-cost Bluetooth receivers. A reception for all RFIC Symposium

#### Information about the IEEE MTT-S Microwave Week

IMS Conference Hours

May 20-25: 8:00 AM - 5:10 PM

#### **Registration Hours**

Saturday, May 19: 2:00 pm — 6:00 pm Sunday, May 20: 7:00 am — 6:00 pm Monday, May 21 — Wednesday, May 24: 7:00 am — 5:00 pm Thursday, May 24: 7:00 am — 3:00 pm

**RFIC Symposium** 

Tuesday, May 22: 8:30 AM - 5:00 PM

**ARFTG Conference & Exhibition** 

Friday, May 25: 7:30 AM - 5:00 PM

#### IMS and µAPS Exhibition Dates and Hours

Tuesday, May 22: 9:00 AM — 5:00 PM Wednesday, May 23: 9:00 AM — 5:00 PM Thursday, May 15: 9:00 AM — 3:00 PM

For additional conference information, visit http://www.ims2001.org attendees is hosted by the RFIC Steering Committee and several vendors and will take place on Sunday, May 22, from 6:00 PM to 10:00 PM at the Crown Plaza Hotel.

#### **57th ARFTG Conference**

The ARFTG conference will be held May 24–25. A joint session on Thursday, May 24, will address recent developments in electromagnetic field probing techniques using scanned near-field probes, atomic-force microscopes and direct or indirect electro-optic sampling methods. The theme for the main event on Friday, May 25, is "Best Practice and Strategies for RF Test." The program will address alternatives, trade-offs, practical considerations and particular examples of industrial methods used to perform testing.

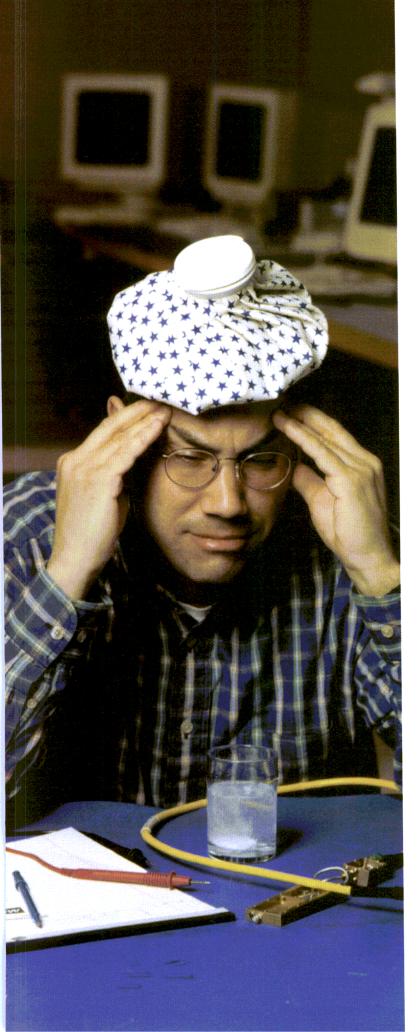
#### Microwave Applications and Product Seminars ( $\mu$ APS)

The microwave application and product seminars are designed to provide technical information related to the latest products of interest available to the microwave community. The seminars are open to all conference and exhibit attendees and will be held on the exhibit floor in Phoenix Civic Plaza on Tuesday, Wednesday and Thursday, May 22–24. CAD tools, simulation techniques, active and passive components and system applications will be in introduced in 30-minute presentations.

#### **IEEE MTT-S Awards Banquet**

The annual awards banquet will take place on Wednesday, May 23, from 7:30 PM to 10:00 PM at the Hyatt Regency. Traditionally one of the highlights of Microwave Week, the evening will consist of a dinner, awards presentation and entertainment by Native American dancers.

#### **IEEE Women in Engineering Reception**


If you'd like to share your thoughts, experiences and background to promote the Women in Engineering Forum, meet with a panel of distinguished women from academia and industry on Wednesday, May 23, at the Hyatt Regency. For more details on this event, please email kavitag@lucent.com.

#### SEE US AT IMS2001!

Noble Publishing and Applied Microwave and Wireless magazine will be exhibiting at IMS2001. Come and see us, sign up or renew your magazine subscription, and check out new Noble Publishing releases.

Noble Publishing Corporation
Applied Microwave and Wireless

MTT-S BOOTH #115



## A lot Less **Headaches**

When you use Noise Com's **UFX-NPR** to test **Noise Power Ratio**.

If you need to test **Noise Power Ratio** without a complex, time consuming set up, look to Noise Com's **UFX-NPR** Noise Power Ratio Test Set. We offer customers a trouble-free solution... NPR test capability right out of the box!

Backed with 15 years of design experience the **UFX-NPR** is loaded with unique features:

- High Frequency capability up to 40 GHz.
- Wide Noise bandwidths up to 10 GHz.
- Superior measurement speed and notch depth.
- Self contained test solution. Calibration, configuration and set up not required.
- Automated measurement technique.
- Easy to use keypad or remote GPIB Control.
- Ongoing data storage within the Unit's memory capacity.
- Test TWTA's, Linearizers, Frequency converters, Amplifiers, CATV applications, Fiber Optic systems.

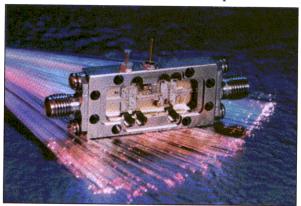
It's simple and painless......the Noise Com UFX-NPR.

Test Smarter!



#### Noise Com

E. 64 Midland Avenue Paramus, NJ 07652 Phone: (201) 261-8797 Fax: (201) 261-8339 Email: info@noisecom.com Web site: www.noisecom.com

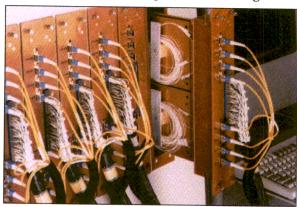



Circle 54

# Product Focus – Devices for Fiber Optics and Optical Communications

#### Optical driver amplifiers for OC-192

CTT Wireless has announced a series of solidstate optical driver amplifiers for OC-192 fiber optic communications. The amplifiers are




designed for use in 10 Gb/s and other high-speed applications up to 20 Gb/s. The basic amplifier provides 18 dB gain and a minimum power output of +10 dBm from 10 MHz to 15 GHz with a flatness of  $\pm 2.2$  dB. To accommodate other optical modulation formats, the company offers custom integration of the amplifier and other components into subsystems that include mixer, phase shift and attenuator functions at frequencies up to 40 GHz. These amplifiers incorporate high gain, low noise MIC thin-film modules eutecticallyl bonded to metal carriers for maximum efficiency and durability.

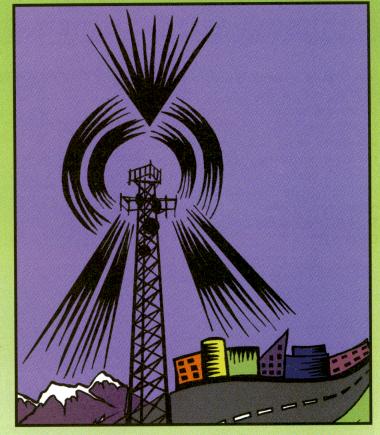
CTT Wireless Circle #190

#### Laser diode test systems

Racal Instruments' Broadband Group offers laser diode burn-in and reliability test systems. The Photonics ET-48 test system allows users to subject complete packaged laser diode assemblies, including output fibers and connectors, to a wide range of test temperatures while monitoring key operational parameters. The system provides individual control of device drive currents and TEC temperatures and monitors forward current and voltage, front facet optical output, photodiode output, TEC voltage and



current and device thermistor temperatures. A 48-channel configuration is available. The computer-controlled environmental test chamber combines specialize modular fixtures for packaged or Chip on Submount (CoS) devices with high-volume airflow to ensure even temperature distribution. Cooling options include closed-cycle refrigeration or liquid nitrogen operation. A Graphical User Interface with sources code is provided for system control.


Racal Instruments Circle #191

#### Optical return loss meter

Telecom International Services has added a new Optical Return Loss Meter Adapter to its product line. The adapter, a completely passive unit, tests the optical return loss (ORL) for fiber

## Base Station Repeater Radio OEM's

Improve your system performance with ClearComm Technologies' line of "off the shelf" and custom designed, application specific Filter and Duplexer products. With ClearComm's state of the art design technology and technical support, OEM's are realizing the highest performance possible with the most cost effective solutions available.



ClearComm Technologies offers a variety of filter products targeted at the wireless/telecommunications market.

#### Applications include:

- Standard base station filters/duplexers
- Custom performance enhancing base station assemblies
- Delay filters for feed-forward amplifiers

- Cosite interference solutions
- Diplexers for 2.4-5.8GHz radios
- Custom products up to 40GHz

#### **PCS/Cellular Duplexers**



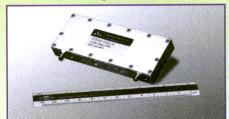
**Integrated Assemblies** 



Tel: 410-860-0500 Fax: 410-860-9005

E-mail: sales@clearcommtech.com

#### **Transmit Receive Filters**




2.4/5.8 Duplexers

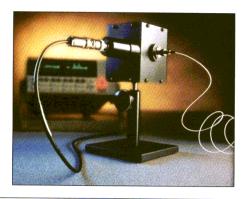




**Delay Filter** 



Waveguide/Duplexers




600 Beam Street Salisbury, Maryland 21801 Web: clearcommtech.com

Circle 62

and DWDM systems. It used with an existing optical loss test set, power meter and source, which connect to appropriate ports on the adapter. The fiber being tested connects to the fiber under test (FUT) port of the ORL adapter. The power meter reading is them used to calculate the optical return loss.

Telecom International Services Circle #192





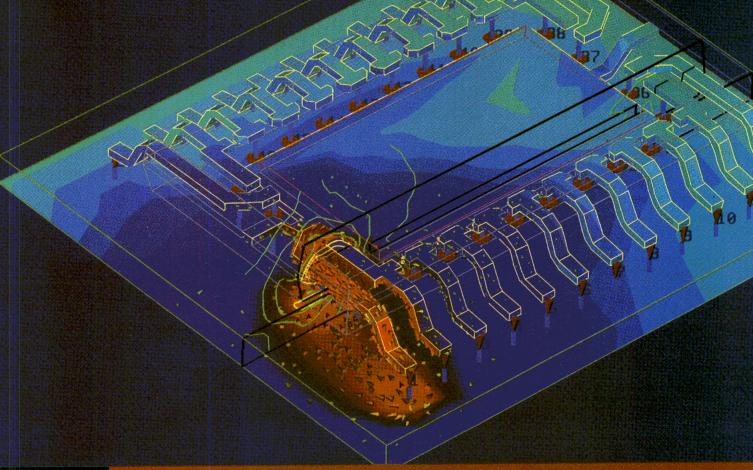
Web: http://www.vectorfields.com

#### **Integrating sphere**

Keithley Instruments has made an agreement with Labsphere to offer a custom-designed integrating sphere optical head. The Model 2500INT Integrating Sphere facilitates direct optical measurement of laser diode output power when used with certain types of electronic test instrumentation. The sphere will be offered as part of Keithley's L-I-V (Light Intensity-Current-Voltage) Test System, designed to test laser diode modules for DWDM and other fiber optic communication systems. The sphere features two ports with three detector choices to cover wavelengths from 500 to 1700 nm. Initially, the detectors offered will be silicon, germanium or cooled InGaAs types. The system starts at \$2995 with the exact price determined by the desired configuration.

Keithley Instruments Circle #193

#### Low toxicity epoxy


Fiber Optic Center offers the AngstromBond® AB9119epoxy system for fiber optic systems. The two-part heat-cured epoxy is formulated to provide a strong bond to glass, metal and ceramic with coloration appropriate for high performance optical terminations. The AB9119 epoxy has less potential to cause dermatitis than most commonly-used heat cure epoxies used in these applications.

Fiber Optic Center Circle #194

#### IrDA transceiver

Vishay Intertechnology has announced three additions to its MicroFace family of IrDA-compliant transceivers. Models TFDU4202, 4203 and 4204 feature a wide supply voltage of 2.4 to 5.5 V and are operational down to 2 V. The TFDU4203 features reduced power consumption and a maximum operating distance of close to 70 cm. The TFDU4202 can operate without an external current limiting resistor when a 3.3 V supply is used,

## Burn out or burn with passion?





→ Electromagnetic engineers with a passionate disposition? At CST we've found this to be quite the norm. This attitude ensures our technical leadership in the field of 3D EM simulation: The incorporation of the Perfect Boundary Approximation<sup>TM</sup> (PBA) technique allows an accurate modeling of curved surfaces while maintaining the unparalleled performance of the FI method in the time domain.

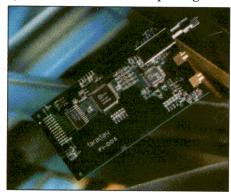
CST MICROWAVE STUDIO<sup>TM</sup>'s typical applications include the simulation of waveguides, couplers, filters, power splitters, multiplexers, switches, planar structures, coax and multipin connectors, MMIC packages, RLC-extraction, and all kinds of antennas.

Circle 35





enabling a range exceeding 1 m. It features a split power supply that only requires a regulated supply for the receiver circuitry, while high IR current is provided by a less-regulat-




ed supply or directly from the battery. The TFDU4204 has input and output logic levels adapted to 1.8-V logic. This model operates to 70 cm with low power consumption and it includes the split supply feature. All three devices consume 0.01  $\mu A$  in the shutdown mode.

Vishay Intertechnology Circle #195

#### Parallel-to-fiber converter

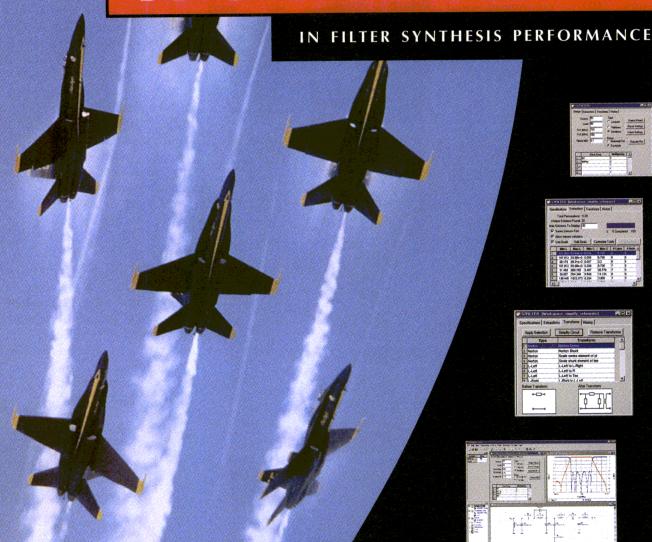
Faraday offers an interface card, the PI-005 which converts parallel (270 Mb/s) to fiber (1300 nm) for transmission distances up to 7 km. For two-way links, the complimentary receiver modules are packaged in



the PO-005 card. These two products add fiber optic capability to the company's family of data transfer interface cards.

Faraday Circle #196

#### Line interface transceiver


TDK Semiconductor introduces the 78P2241B line interface transceiver IC for coaxial and fiber com-



munications. The device operates at either 3.3 or 5 V and consumes less tan 110 mA of supply current. The new IC adds a line-code violation (LCV) detector not provided in earlier versions. Other features include clock recovery and transmitter pulse shaping functions for applications using 75-ohm coaxial cable at distances up to 1100 feet and speeds up to 51.84 Mb/s. The device is fabricat-



### BEYOND THE EXPECTED



**High Performance and Control.** That's what you get with Eagleware's new direct synthesis filter program, S/FILTER<sup>™</sup>. From arbitrary transmission zero placement, to unequal termination impedances, to optimized custom designs, S/FILTER does it all ... directly from your specified design criteria.

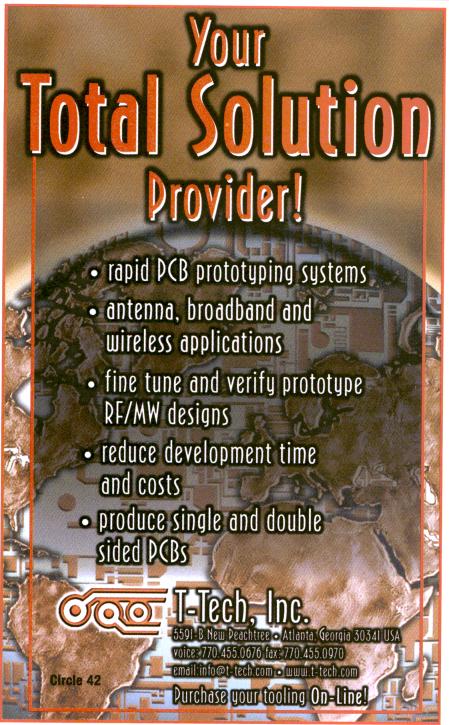
You're in control of response shape, element values and topology. So break free from normal filter design limits and:

- synthesize multiple solutions per design
- maximize realizability based on your goals
- · apply transforms to create custom designs
- maximize economy: place zeros where needed

And it's fully integrated into the GENESYS suite of synthesis, nonlinear, S-parameter, electromagnetic and physical design tools.

So Grab a Seat and Hold On! With modules priced at \$2490, they're flying fast. And so will your design.




www.eagleware.com Fax: +1 678-291-0971

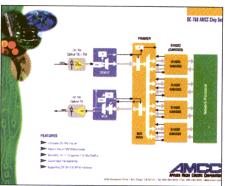
Phone: +1 678-291-0995 sales@eagleware.com

ed using a BiCMOS process and supports applications including E3, DS3, STS-1, DSLAMs, digital multiplexers, SONET Add/Drop multiplexers, PDH equipment and ATM/WAN access for routers and switches. The IC is offered in PLCC or TQFP packages. Pricing is \$31.00 each in 10,000 unit quantities.

TDK Semiconductor Circle #197






#### **VCXO** for optical networks

Champion Technologies expands its FT17000 Series SMT VCXO line with 3.3 and 5 V supply voltage, plus 10E and 100E PECL (Positive Emitter Coupled Logic) outputs. Frequency stabilities are available from  $\pm 30$  ppm over  $0^{\circ}$  to  $+70^{\circ}$  C to  $\pm 50$  ppm over  $-40^{\circ}$  to  $+85^{\circ}$  C. The tuning deviation range is ±80 to ±120 ppm. Typical jitter is 1 ps RMS with <450 psec rise and fall times. Applications include SONET. add/drop multiplexers, WDM and DWDM transmission equipment.

Champion Technologies Circle #198

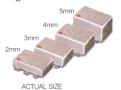
#### **Transimpedance amplifier**

Applied Micro Circuits has introduced an OC-768 transimpedance amplifier fabricated using silicongermanium (SiGe) technology. The S76800 will successfully handle data rates up to 48 Gb/s in RZ and NRZ data streams. The device is engineered for a single –5.2 V supply and low power consumption of 0.6 W.



Transimpedance gain is 220 ohms with a 50-ohm single-ended output for efficient clock and data recovery. The S76800 has input noise specified at 4  $\mu$ A RMS, permitting sensitivity down to 50  $\mu$ A with  $10\times10^{-10}$  BER. The device can interface with a PIN photodiode using ribbon bonding or flip-chip technology. Future products in the family include OC-768 modulator drive, MUX/DEMUX devices and framer.

Applied Micro Circuits Circle #199




## INNOVATIVE MIXERS

#### .smaller size .better performance .lower cost

Searching high and low for a better frequency mixer? Then take a closer look at the innovative Innovative Technology built into Mini-Circuits technology ADE mixers. Smaller size is achieved using an ultra-slim, patented package with a profile as low as 0.082 inches (2mm) in height. Electrically, ADE mixers deliver better performance than previous generation mixers through all welded connections and unique assembly construction which reduces parasitic inductance. The result is dramatically improved high frequency and IP2-IP3

performance. Plus, ADE's innovative package design allows water wash to drain and eliminates the possibility of residue entrapment. Another ADE high point is the lower cost...priced from only \$1.99 each (qty.10-49). So, if you've been searching 2rd high and low for a mixer to exceed expectations...ADE is it



ADE Mixers...Innovations Without Traditional Limitations!

#### 50kHz to 4200MHz

| ICAL S                              | PECIFICATIO                                                                            | NS:                                                                                                                                                                                                                                                                                                                                                                                                                         | Conv. Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-R Isol.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Height (mm)                         | Freq.<br>(MHz)                                                                         | LO<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                 | Midband<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bandwide<br>(dB)                                                     | IP3 (dBm)<br>@ Midband                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Price (\$ea.)<br>Qty. 10-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3<br>4<br>4<br>3<br>5<br>2          | 2-500<br>0.2-400<br>0.5-500<br>2-600<br>1-1000<br>0.05-250<br>50-1000                  | +3<br>+7<br>+7<br>+7<br>+7<br>+7                                                                                                                                                                                                                                                                                                                                                                                            | 5.2<br>5.3<br>5.0<br>5.3<br>5.4<br>4.6<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55**<br>47**<br>55**<br>50**<br>45**<br>40<br>35                     | 16<br>10<br>15<br>16<br>12<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.95<br>4.25<br>1.99<br>3.95<br>4.25<br>4.95<br>2.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3<br>2<br>3<br>3<br>2<br>3<br>3     | 200-1000<br>800-1000<br>800-1000<br>5-1500<br>50-1600<br>1500-2000<br>1700-2500        | +7<br>+7<br>+7<br>+7<br>+7<br>+7<br>+7                                                                                                                                                                                                                                                                                                                                                                                      | 6.8<br>7.4<br>5.9<br>6.6<br>8.1<br>5.4<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53**<br>32<br>32<br>40**<br>40**<br>31<br>27                         | 15<br>17<br>13<br>15<br>11<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.25<br>3.25<br>2.95<br>3.45<br>3.10<br>4.95<br>3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 3 3 3 3 3 3 3                     | 2100-2600<br>2300-2700<br>1500-2800<br>200-3000<br>2500-3200<br>1600-3500<br>1750-3500 | +7<br>+7<br>+7<br>+7<br>+7<br>+7                                                                                                                                                                                                                                                                                                                                                                                            | 6.0<br>5.6<br>5.1<br>4.5<br>5.4<br>6.3<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34<br>36<br>30<br>35<br>29<br>25<br>33                               | 17<br>13<br>8<br>14<br>15<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.95<br>3.45<br>5.95<br>6.95<br>4.95<br>3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3<br>4<br>V 3<br>3<br>W 4<br>3<br>3 | 300-4000<br>0.5-500<br>2-750<br>2-500<br>0.5-600<br>10-1200<br>5-2500                  | +7<br>+10<br>+10<br>+13<br>+13<br>+13                                                                                                                                                                                                                                                                                                                                                                                       | 6.8<br>5.0<br>5.3<br>5.2<br>5.2<br>6.3<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35<br>55**<br>52**<br>50**<br>53**<br>45**<br>34**                   | 12<br>15<br>15<br>17<br>17<br>22<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.95<br>2.99<br>4.95<br>5.95<br>6.45<br>6.45<br>6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 3 4 3 3 3 3 3                     | 5-3500<br>5-4200<br>0.5-500<br>400-1000<br>500-1200<br>100-1700<br>1500-2000           | +13<br>+13<br>+17<br>+17<br>+17<br>+17<br>+17                                                                                                                                                                                                                                                                                                                                                                               | 6.9<br>7.5<br>5.3<br>7.0<br>6.7<br>7.2<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33**<br>29**<br>52**<br>39<br>34<br>36<br>29                         | 18<br>17<br>23<br>30<br>28<br>25<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.95<br>14.95<br>4.95<br>7.95<br>8.95<br>8.95<br>8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | Height (mm) 3 4 4 4 3 3 3 5 5 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3                            | Height (mm) Freq. (MHz) 3 2-500 4 0.5-500 3 1-1000 3 1-1000 3 1-1000 2 800-1000 2 800-1000 3 800-1000 3 50-1600 3 1500-2000 3 1500-2000 3 1500-2000 3 1500-2000 3 1500-2000 3 1500-3200 3 1500-3200 3 1500-3500 3 250-1500 3 250-1500 3 1500-2500 3 250-3000 3 250-3000 3 250-3000 3 250-3000 3 250-3000 3 3 10750-3500 3 3 5-5500 3 10-1200 3 5-5500 3 5-4200 4 0.5-500 3 5-4200 4 0.5-500 3 50-1200 3 500-1200 3 500-1200 | (mm) (MH2) (dBm) (3 2-500 +3 4 0.2-400 +3 4 0.5-500 +7 3 1-1000 +7 5 0.05-250 +7 3 2-600 +7 2 800-1000 +7 2 800-1000 +7 2 800-1000 +7 3 5-1500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +7 3 1500-2500 +1 3 1500-2500 +1 3 1500-2500 +1 3 1500-2500 +1 3 1500-2500 +1 3 5 5-2500 +1 3 3 5-2500 +1 3 5 5-2500 +1 3 5 5-2500 +1 3 5 500-1200 +1 7 3 5 500-1200 +1 7 3 5 500-1200 +1 7 3 5 500-1200 +1 7 3 5 500-1200 +1 7 3 5 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500-1200 +1 7 3 1 500- | Height (mm) (MHz) (GBm) (GBm) (GB) (GB) (GB) (GB) (GB) (GB) (GB) (GB | Height (mm) (MHz) (OBm) | Height (mm) Freq. (DBm) (GBm) |

Component mounting area on customer PC board is 0.320"x 0.290". 
-- Specified midband. 
-- \*Protected by U.S. patent 6133525.







#### **Product Spotlight**



Circle 250



A compact full featured, modestly priced, manually operated probe station developed for engineers and scientists. Measure Microwave, RF and DC parameters of Semiconductor Devices, Packages and Assemblies with NIST traceability.

- X-Y-Z probe positioners \*Top Plate Z-IIII \*Vacuum Accessory Manifold\*
   TX-40X Stereo Zoom Microscope \* Adjustable Halogen Illuminator \*
   Vacuum Accessories \* Compatible with 40GHz+ probes \*
  - Accessories for Thermal Chucks and Probe Cards
  - Test wafers, microstrip packages and surface mount components.



J microTechnology 3744 NW Bluegrass Pl Portland, OR 97229 (503) 614-9509 (503) 531-9325 [FAX] ww.jmicrotechnology.co

A Probe Station On Every Bench

#### Circle 251

#### Waveguide Hardware and Software Solutions

- Rigorous EM field analysis based software (WindowsNT/98/2000) is available for design and analysis of all types of waveguide filters (E-plane, iris, dual iris, asymmetrical iris, evanescent mode LPF, BPF, bandstop dual mode), Diplexers (E-Tee. H-Tee and Bifurcated common junction) This Software is very reasonably priced!
- Rigorous EM field analysis based designed low-loss Waveguide Ceramic Block and air cavity filters are available for applications in 900 MHz to 50 GHz frequency band.

Consulting services are available for:

- Development of custom software for waveguide component and circuit design
- Development of waveguide hardware

For your specific needs contact eWAVE Customer Service: Email:ewave1@qwest.net Tel: (505) 792 3878 Fax: (505) 792 0827

Circle 254

#### Your Connection to Quality Custom Built Cable Assemblies



Semi-Rigid Cable Assemblies

Custom built on CNC Benders, with our design software available to customers. Our .141 SMA assemblies offer 19dB return loss to 33 GHz.

#### Flexible Coax Cable Assemblies

RG types, Conformable, LMR, or TFlex. Our new SRC-316 offers 20% lower loss than RG316 with 90dB shielding

Contact us at: Phone: (707) 573-1900 Fax: (707) 573-1999 www.SRC-Cables.com



Circle 253

#### **Advertising works!**

To get your company's ad into Applied Microwave & Wireless, call your advertising sales representative today!

Scott Spencer Eastern region Tel: 603-472-8261 E-mail: slspencer@csi.com

Tim Burkhard Western region Tel: 707-544-9977 E-mail: TPBurk@aol.com

Aileen Kronke Product Spotlight and Classifieds Tel: 770-449-6774

E-mail: aileen@noblepub.com



Circle 252

#### How to place Product Spotlight and Classified ads

Our Product Spotlight section allows you to show off your company's products or services in an economical 1/9 page color ad. Ads may be sent camera ready, or we'll make up an ad for you! All you'll need to provide is a product photo, company logo and a description of the product or service you want to advertise.

Our Classifieds section is the place to advertise career opportunities, consulting services, used test equipment and just about anything else. Special Classifieds rates are available and are agency-commissionable if material is supplied. Or, if you prefer, our staff can make up the ad for you. Classified display ads are available in color or black and white in standard ad sizes, or in black and white by column

For more information, please contact Aileen Kronke at 770-449-6774, or by e-mail at aileen@noblepub.com.

## Classic titles for the RF design professional



#### **Spectrum and Network Measurements**

Robert A. Witte

This book covers theory and practice of spectrum and network measurements in electronic systems. Witte's thorough coverage of critical concepts, such as Fourier analysis, transmission lines, intermodulation distortion, signal-to-noise-ratio and S-parameters enables the reader to understand the basic theory of signals and systems, relate it to measured results, and apply it when creating new designs.

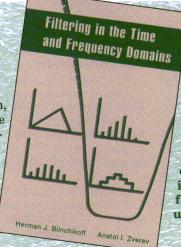
"Bob does a great job of describing the theory behind spectrum and network measurements and then relating that theory to real-world measurements. I would recommend this book to all electronics engineers who must make frequency-domain measurements of any kind."

—Dan Romanchik, contributing editor Test and Measurement World

ISBN 1-884932-16-9 320 pages

Order NP-38 ......\$59.00




#### Filtering in the Time and Frequency Domains Herman J. Blinchikov, Anatol I. Zverev

Long regarded as a classic of filter theory and design, this collaboration offers the most comprehensive treatment of filtering techniques, devices, and concepts as well as pertinent mathematical relationships.

This book is invaluable for the engineer who may not be a filter design specialist, but needs to know about the possibilities and limits of the filtering process to use filters competently in system design.

ISBN 1-884932-17-7 520 pages

Order NP-39 .....\$69.00



"The techniques presented are encyclopedic in scope. They should be useful to almost all engineers in electronics, and especially to circuit designers and system engineers. This book can be considered to define a new and extremely useful course in circuits and systems for graduate or advanced undergraduate students"



## www.noblepub.com



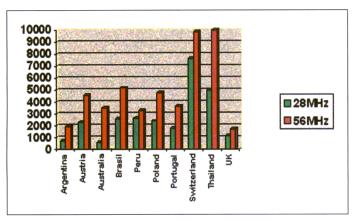
For information or to order contact: Noble Publishing Corporation 630 Pinnacle Court, Norcross, GA 30071 Tel: 770-449-6774 • Fax: 770-448-2839 www.noblepub.com European customers may order through American Technical Publishers Tel: +44 (0) 1462 437933

Fax: +44 (0) 1462 433678 www.ameritech.co.uk

Dealer inquiries invited. Prices do not include shipping.

Discounts are offered for quantity purchases.

VISA, MasterCard, American Express accepted


#### **Advertiser Index**

| Advertiser and FAX Page No.                                         | Advertiser and FAX                        | Page No.  | Advertiser and FAX                                | Page No.      |
|---------------------------------------------------------------------|-------------------------------------------|-----------|---------------------------------------------------|---------------|
| Advanced Power Technology 541-388-0364                              | JCA Technology 805-987-69                 |           | REMEC Inc.                                        |               |
| RF MOSFETs                                                          | RF and microwave amp                      |           | 1-877-66-REMEC (667-3632)                         | (tel.)        |
| Agilent Technologies 1-800-452-4844 (tel.)                          | and subsystems                            | 9         | MMDS transceivers                                 | 24            |
| Test solutions                                                      | JFW Industries 317-881-679                |           | RF Micro Devices 336-931-7454                     |               |
| Bluetooth solutions                                                 | Fixed attenuators                         |           | RF components                                     | 96-97         |
| AmerAmp 760-602-8321                                                | Johanson Manufacturing 97:                |           | Richardson                                        |               |
| Amplifiers                                                          | Online catalog                            |           | 1-800-RF POWER (737-6937)                         |               |
| American Technical Ceramics<br>631-622-4748                         | Johanson Technology 805-38                |           | UMS broadband wireless.                           | 91            |
|                                                                     | Ceramic capacitors                        |           | RLC Electronics 914-241-1753                      |               |
| Thin film products Cover 3  Anritsu 1-800-ANRITSU (267-4878) (tel.) | Lorch Microwave 410-860-1                 |           | SPDT switches                                     |               |
| Power amplifier test47                                              | Filters and diplexers . LPKF 503-682-7151 | 41        | Sage Laboratories 508-653-5671                    |               |
| Ansoft 412-471-9427                                                 | PCB prototyping equip                     | mont 10   | Phase shifters                                    | 61            |
| Symphony design suite                                               | M/A-COM 1-800-618-8883                    | nent10    |                                                   | co            |
| APLAC Solutions 972-719-2562 (tel.)                                 | GaAs converter chips.                     | 51        | SAW oscillators                                   |               |
| Simulation technology                                               | Maxim 408-737-7194                        |           | 561-283-5286                                      | UN            |
| Applied Wave Research 310-726-3005                                  | 2.4 GHz LNA                               | 23        | Interconnectors                                   | Corror 4      |
| Design software                                                     | Oscillators                               |           | Stanford Microdevices                             | Cover 4       |
| Besser Associates 650-949-4400                                      | Micro Lambda 510-770-9213                 |           | 1-800-764-6642 (tel.)                             |               |
| Training courses18                                                  | YIG-based synthesizers                    |           | SiGe amplifiers                                   | 1             |
| Bird Component Products 727-547-0806                                | Microwave Components 561-                 | 286-4496  | Gain blocks                                       | <del></del> 5 |
| Component products59                                                | Distribution for JFW .                    |           | SV Microwave 561-844-8551                         |               |
| C.W. Swift 818-989-4784                                             | Microwave Filter Company 1                |           | Blind Mate connectors                             | 93            |
| MMBX connectors Cover 2                                             | Filters                                   |           | Synergy Microwave 973-881-836                     |               |
| California Eastern Labs                                             | Mini-Circuits 718-332-4661                |           | Modulator/demodulator                             |               |
| 408-988-3500 (tel.)                                                 | Power splitters/combine                   | ers2-3    | Temex Microwave 623-780-1995                      |               |
| Fiber optic components54-55                                         | Mixers                                    |           | SAW filters                                       |               |
| ClearComm 410-860-9005                                              | VCOs                                      |           | Oscillators                                       |               |
| Filter and duplexer products 119                                    | Amplifiers                                |           | Teradyne 617-422-2746 (tel.)                      |               |
| Coilcraft 847-639-1469                                              | Terminations                              |           | Bluetooth                                         | 43            |
| Wirewound inductors78                                               | New products                              |           | Trilithic 1-800-TRILITHIC (874-54                 | 184) (tel.)   |
| CST 617-576-5702                                                    | Attenuators                               |           | Switches                                          | 15            |
| Simulation software68-69                                            | MITEQ 631-436-7430                        |           | Trompeter 818-707-2020 (tel.)                     |               |
| EM simulation                                                       | Microwave components                      |           | PCB coax series                                   | 90            |
| Cushcraft 1-800-258-3868                                            | communications equipm                     |           | T-Tech 770-455-0970                               |               |
| Antennas                                                            | Noble Publishing 770-449-67               |           | PCB solutions                                     | 126           |
| Eagleware 770-939-0157                                              | Books for engineers                       | 49, 129   | Vari-L 303-371-0845                               |               |
| Software design modules20-21<br>Filter design software125           | Noise Com 201-261-8339                    | 110       | RF and microwave solutions                        | s 19          |
| EiC Corporation 510-979-8902                                        | Test products                             |           | Vector Fields 630-851-2106                        |               |
| InGaP HBTs45                                                        | Paratek 1-877-377-0336 (tel               |           | Design software                                   | 122           |
| EMC Technology 856-429-7800 (tel.)                                  | Antennas                                  |           | Venkel 512-794-0087                               | 100           |
| AlN chip terminations                                               | Frequency synthesizers                    |           | Chip components Voltronics International 973-586- | 109           |
| Fujitsu Compound Semiconductor                                      | Quasar + 44 1 626 832994                  |           | Trimmer capacitors                                |               |
| 408-428-9111                                                        | Filters and diplexers                     | 85        | Werlatone 914-279-7404                            |               |
| Microwave devices                                                   | RelComm 410-860-2327                      |           | Couplers, combiners                               | 97            |
| Huber+Suhner 802-878-9880                                           | SMT coaxial relays                        |           | WJ Communications 650-813-244                     |               |
| Fiber optic products                                                |                                           |           | RF heads                                          |               |
| Inmet 734-426-5557                                                  | Tell them you say                         |           | Xemod 408-733-7229 (tel.)                         |               |
| Attenuators80                                                       | Applied Microwave &                       | Wireless! | Amplifier components                              | 39            |
|                                                                     |                                           |           |                                                   |               |

Applied Microwave & Wireless (USPS 011-596) (ISSN 1075-0207), printed in the U.S.A., is published monthly by Noble Publishing Corporation, 630 Pinnacle Court, Norcross, GA 30071. April 2001. Twelve issues are mailed in the United States for \$30, outside the U.S. for \$60, or provided free, with a completed and signed subscription form, to qualified professionals engaged in electronics engineering at 1 MHz to lightwave frequencies. Single issues, when available, are \$7 in the U.S. and \$12 outside the U.S. The material contained in this magazine is believed to be true and correct; however, the responsibility for the contents of articles and advertisements rests with the respective authors and advertisers. Periodical Rate postage paid at Norcross, GA 30071 and additional mailing offices.

Postmaster: Send address corrections to Applied Microwave & Wireless, 630 Pinnacle Court, Norcross, GA 30071.

Copyright © 2001 by Noble Publishing Corporation. All rights reserved. Reproduction in whole or in part of any text, photograph or illustration without written permission from the publisher is strictly prohibited.



▲ Figure 1. Comparison of yearly cost of a point-to-point 26 GHz license in various countries (in US\$).

#### **Encouraging spectral efficiency through license fees**

The most popular method of charging for spectrum usage is based on the frequency band used and the necessary bandwidth on a link by link basis. This directly equates to more efficient usage of scarce frequency resources, which simplifies frequency allocations and increases potential link densities within a given area for a fixed available frequency resource. Using higher modulation schemes for the same capacity will generally provide cost savings in the license fee. This method should be encouraged to attract spectrum users to deploy more spectrally efficient equipment.

#### **Comparison of license fees**

Figure 1 shows the typical yearly cost of a point-topoint 26 GHz license in various countries. The comparison between a 28 MHz and 56 MHz bandwidth charge demonstrates the method of charging according to the bandwidth used. In some cases, the difference is as much as 500 percent. This charging method encourages the use of spectrally efficient radio systems, particularly for large users of spectrum. For example, 100 STM-1 links deployed in Australia using a bandwidth of 28 MHz would cost the operator US\$61,000. A similar deployment using a bandwidth of 56 MHz would cost US\$340,000: a difference of US\$279,000.

Another method used to allocate spectrum has been to auction to the highest bidder. This method has been used in Australia, Canada, the UK and the US for mostly LMDS/LMCS or point-to-multipoint services. The cost of spectrum has varied in each of these auctions. In Canada the cost has been the equivalent of US\$25,000 per MHz yearly (10 years); in Switzerland, the cost was US\$59,000 per MHz yearly. The costs of these licenses are proportionately higher; therefore, the importance of using spectrally efficient equipment is more apparent.

#### **Conclusion**

The inability to implement enough wired or fiber solutions to meet the explosive demands for high-speed data places an increasing importance on wireless solutions. Wireless solutions are creating new industries that depend on radio spectrum. However, radio spectrum is a scarce resource and must be used wisely. Significant improvement in spectrum reuse can be achieved by using high-order modulation systems.

Auctions of spectrum and license fees result in costs that operators must bear in order to do business. This encourages efficient use of the spectrum. Wireless has the benefit of fast and easily reconfigurable deployment in repsonse to changing needs. However, because there are alternative methods of delivering similar services, the license charge should not be cost prohibitive because that would discourage the use of wireless as a method of delivery.

## Maximimizing the Potential of Radio Spectrum with High-Order Modulation

By Peter Gibson DMC Stratex Networks

lobal telecommunication deliberization has increased the demand for licensed radio spectrum. New operators and new services require fixed service spectrum to enable them to bypass the

incumbent national operator's (PTT) access network. In particular, the new wireless services for Broadband Wireless Access (BWA) and 3rd generation mobile (UMTS) require point-to-point radio relay as the most economic method to connect customers to the point of presence (POP).

A recent ERC Report recognized that in certain frequency bands, the growth in demand for spectrum may lead to more and more congestion. It is therefore important to consider the development of more spectrally efficient systems to ensure that radio spectrum, a scarce resource, is conserved and utilized in an efficient and economically viable way.

#### **New terrestrial services**

Applications that are attributable to the increased demand for fixed terrestrial spectrum include alternative telecommunication providers, competitive local exchange carriers (CLECs), infrastructure services for mobile systems (UMTS/IMT-2000) and the LMDS/ LMCS or WLL services that are necessary to deliver broadband services to small- and medium-sized businesses. Demand also continues for existing terrestrial spectrum from other radio services, such as satellite and broadcast services. This further emphasizes the need to explore better spectrum conservation techniques to use the spectrum in the most efficient

#### **Spectral efficiency**

The development of efficient spectrum utilization techniques will increase the availability of spectrum to meet increasing demand. One effective method of increasing spectral efficiency is to use less bandwidth

manner, thus preserving this limited resource.

for a given capacity. A higher order modulation scheme is required to make this possible.

For a 155 Mbit/s capacity, the minimum bandwidth that can be used currently is 28 MHz. DMC Stratex

Networks has developed an STM-1/OC3 128QAM point-to-point radio that uses half the bandwidth of any existing radios at 18 GHz and above. This is especially important where mixed capacities are deployed in the same sub-band of spectrum. For instance, a single 3.5 MHz occupied channel could block a wider bandwidth system (56 MHz). Using narrower bandwidths reduces the probability that the block of spectrum allocated to an operator is restricted.

Spectral efficiency is particularly important for access networks in which link densities within a given area are expected to be high. Data networks fuel the demand and increased capacities will be attributed to the demand for Internet and other packet data type services.

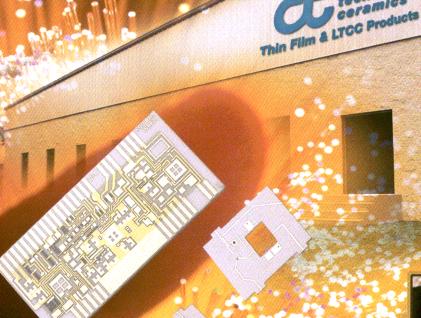


Peter Gibson joined DMC Stratex Networks in February 1998, from the UK's Radiocommunications Agency (RA). At RA, he was responsible for assigning and licensing fixed terrestrial links to the numerous UK operators.

As DMC's manager of regulatory affairs Peter's primary responsibilities include the development of ETSI standards for new technology developed by DMC Stratex Networks, andglobalapproval of new products promoting spectral efficiency to both regulators and operators. DMC Stratex Networks can be reached by telephone at 408-944-1817 or by fax at 408-944-1648.

#### **Modulation schemes**

The immediate benefit to using highorder modulation schemes is the saving in bandwidth. The advantage is obvious for a multi-operator environment in which spectrum is shared. Even in situations in which operators have their own exclusive spectrum, it is still advantageous to use bandwidth efficient schemes to limit the blocks of spectrum necessary for each installed network. Bandwidth efficient schemes enable more efficient coordination where guard bands have been introduced between operator allocations. An


example is the use of 28 MHz STM-1 systems versus common 56 MHz STM-1 systems between two operators' allocation blocks. A maximum guard band of 28 MHz is sufficient for providing interference-free operation between adjacent links with 28 MHz bandwidth systems. 56 MHz bandwidth systems would need a maximum guard band of 56 MHz to provide sufficient interference protection.

ATC CUSTOM

## THIN FILM & LTCC

PRODUCTS

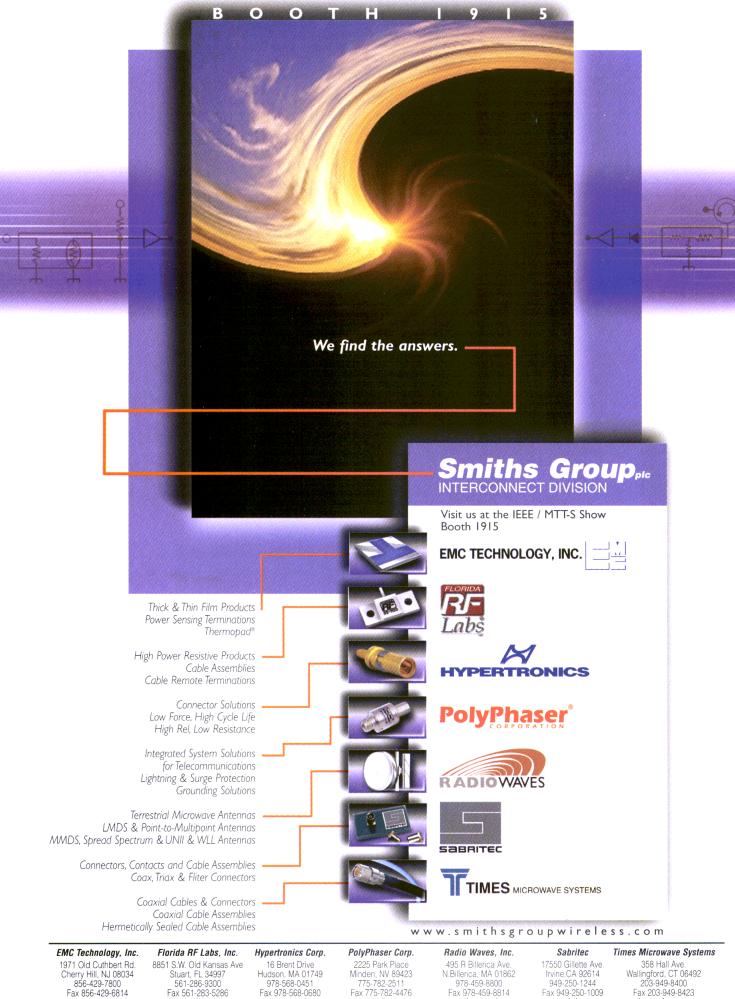
SUPPLYING THE WORLD'S TELECOMMUNICATIONS LEADERS





Jacksonville, Florida – Judah Wolf, Sr. Vice President – Foundary Operations (rt.), and Keith Mason, LTCC Business Development Manager, cut the ribbon on an additional 22,000 square feet for ATC Thin Film and LTCC Products.

To learn more, visit www.atceramics.com/tf/3






AMERICAN TECHNICAL CERAMICS

COMPONENT AND CUSTOM INTEGRATED PACKAGING SOLUTIONS FOR RF, MICROWAVE AND TELECOMMUNICATIONS

PHONE: 631-622-4700 • FAX: 631-622-4748 • WWW.ATCERAMICS.COM



www.emct.com www.rflabs.com www.hypertronics.com www.polyphaser.com

Circle 45

N.Billerica, MA 01862 978-459-8800 Fax 978-459-8814 www.radiowavesinc.com

www.sabritec.com www.timesmicrowave.com